THE AUSTRALIAN ASCIDIACEA PART 2, APLOUSOBRANCHIA (1)

Patricia Kott

Kot1, P. 19906 30: The Australian Ascidiacea Part 2, Aplousobranchia (1). Memoirs of the Queensland Museunt 29(1): 1-266. Brishanc. ISSN 0079-8835.

In the primarily colonial suborder Aplousobranchia of the class Ascidiacea (subphylum Tunicata) 106 species in 20 genera in the known family group taxa Cionidac, Diazonidac, Clavelinidae, Holozoidae and Polycitoridae, and the new families Pyenoclavellidae and Stomozoidae are now known to occur in Australian waters. Forty-nine species and 5 gencrat are also new. Familial and generic (including larval) characters are reviewed and revised; and dichotomous keys are presented for all taxa.

Most of the families are diverse and well represented in Australia. Their phylogenetic relationships and those of some of the genera discussed in this part are obscure. In some cases (e.g. Sigilina) evidence from larval adhesive organs conflicts with relationships deduced from adult morphology. There is, moreover, a degree of parallel evolution and convergence in zooid and colony form (apparently directly related to the development of cloacal systems) that often obscures phylogeny. Even in the one genus, Eudistoma, which is especially well represented in Australian waters, there is a range of species that reflect most of the stages in the evolution of colonial systems and colony integration, from independently opening pooids to the presence of cloacal cavities and apertures. The anterior diversion of the first row of stigmata along the mid-dorsal line in Pycnoclavella and in Eudistoma and other polycitorids is another convergent character associated with size reduction and simplification of zooids. It cannot be regarded as a significant character at higher taxon level.

However, the position and shape of the stomach and the length of the oesophagus and duodenum are newly recognised plesiomorphic characters contributing to the definition of a number of gencra, as do the arrangement and course of longitudinal body muscles. The site where fertilisation takes place is found to be of significance in defining Pycnoclavetlidae but is unexpectedly variable in certain genera of the Polycitoridac.

The geographic affinities of the majority of known species appear to be with tropical rather than subantarctic fauna. Indigenous species are most common in the temperate waters of the southern coast of the continent although there are also some tropical species that appear to be indignous. \square Indo-West Pacific, Ascidiacea, Aplousobranchia, Cionidae. Diazonidae, Clavelinidae, Pycnoclavellidae, IIolozoidae. Polycitoridae.
Parricia Kott, Queensland Museum, PO Box 300, South Brishane. Queensland. 4101, Australia; 28 June 1989.

Frontispices: a busenile vegetative food of the aptousobranch dscidian Syenzo pulfera, showing the posterior gut loop characteristic of the suborder. Branchat tentacles can be seen just inside the incurrent aperture at the top of the pharym. Twe pars of rows of stgmata perforate the pharyn. and the bilabiate anus opens tnts the atrat cavity near the ram of the large excurvent aperture. Incipent make follicles ean he seen in the gut loop, fust hehind the oval stomach.

Introduction, 4
Acknowledgements, 5
Collection and Examination of
Aplousobranch Ascidians, 6
Annotated Glossary, 7
Aplousobranchia, 18
Cionidae, 20
Ciona, 21
C. intestinalis, 21

Diazonidae. 24
Rhopalaea, 25
R. crassa, 26
R. tenuis, 29

Pseudodiazona, 30
P. claviformis, 31

Clavelinidae. 33
Clavelina, 35
C. arafurensis, 38
C. australis, 39
C. baudinensis, 41
C. cylindrica, 42
C. dagysa, 45
C. fecunda, 47
C. meridionalis, 48
C. mirabilis, 50
C. moluccensis, 51
C. nigra n.sp., 53
C. oliva n.sp., 55
C. ostrearium, 57
C. pseudobaudinensis, 58
C. robusta n.sp., 61

Nephtheis, 63
N. fascicularis, 63

Pycnoclavellidae n.fam., 66
Pyncnoclavella, 67
P. arenosa, 69
P. aurantia n.sp., 71
P. detorta, 71
P. diminuta, 73
P. elongata n.sp., 76
P. tabella n.sp., 77

Euclavella n.gen., 79
E. claviformis, 79

Holozoidae, 81
Sigillina, 84
S. australis, 87

CONTENTS

S. cyanea, 89
S. fantasiana, 92
S. grandissima n.sp., 93
S. mjöbergi, 96
S. nigra, 98
S. signifera, 100

Polydistoma n.gen., 101
P. fungiforme n.sp., 102
P. longitube, 104

Hypodistoma, 105
H. deerratum, 106
H. mirabile, 108

Distaplia, 109
D. australiensis, 113
D. cuscina n.sp., 115
D. dubia, 116
D. florida n.sp., 118
D. muriella n.sp., 119
D. pallida n.sp., 121
D. prolifera $\mathrm{n} . \mathrm{sp} ., 122$
D. racemosa n.sp., 124
D. regina n.sp., 125
D. retinaculata n.sp., 125
D. stylifera, 127
D. tokioka n.sp., 129
D. violetta n.sp., 130
D. viridis, 132

Hypsistozoa, 133
H. distomoides, 134

Neodistoma n.gen., 135
N. mammillatum n.sp., 135

Sycozoa, 137
S. brevicauda n.sp., 140
S. cavernosa n.sp., 142
S. cerebriformis, 143
S. murrayi, 146
S. pedunculata, 147
S. pulchra, 149
S. seiziwadae, 152
S. sigillinoides, 153

Stomozoidae n.fam., 156
Stomozoa 157
S. australiensis n.sp., 157
S. bellissima n.sp., 159

Poiycitoridae, 162
Polycitor, 165
P. annulus n.sp., 165
P. calamus n.sp., 167
P. cerasus n.sp., 168
P. circes, 169
P. emergetus n.sp. 170
P. giganteus, 171
P. muhilus n.sp.: 174
P. obeliscus. 175
P. suharborensis, 175
P. transhucichus, 176

Crispodytes. 178
C. dellachiajei, 179

Polvcitorella, 183
P. coronaria. 184
P. orientalis n.sp. 187

Eudistoma. 188
E. amplunt. 194
E. amaematum n.sp., 196
E. angolanum n.sp., 197
E. aureum n.sp., 199
E. huthatum n.sp., 200
E. carnosum n.sp., 201
E. constrictum n.sp., 203
E. thoreum n.sp., 205
E. elougaluth. 205
E. gilboviride, 206
E. glaucum, 208
E. glohosum, 210
E. gracilum n.sp., 211
E. incuhitum n.sp., 212
E. laysumi, 214
E. maculosum n.sp., 216
E. malum n.sp., 217
E. microlarvum n.sp. 218
E. muscosum nom. nov.. 220
E. ovatuth. 222
E. prarulum n.sp., 224
E. purpureum n.sp., 225
E. pripiforme, 226
E. regirum n.sp., 228
E. sabulosum n.sp. 229
E. superlatum n.sp., 229
E. tigrum n.sp. 231
E. tuaidum n.sp., 232
E.rostoma n.gen., 233
E. ianthinum, 234

Brevicolhus n.gen., 236
B. wheratus n.sp., 237

The following account (part 2 of a review of the Australian ascidians) treats species of the families Cionidae Lahille, 1887, Diazonidae Seeliger, 1906, Clavelinidae Forbes and Hanlcy, 1848, Holozoidae Berrill, 1950. Polycitoridae Michaelsen, 1904, and the new iamilies Stomoroidae and Pyenoelavellidae. These families. together with Polyclinidae Milne Edwards. 1842 and Didemnidae Giard, 1872 (yet to be treated), comprise the 9 prescnty recognised familics of the suborder Aplousobranchia Lahillc, 1887. It is one of the wo suborders in the order Enterogona, the other being the Phlebobranchia.

The classification and phylogeny of the suborders Phlebobranehia and Stolidobranchia (the only suhorder of the order Pleurngona) are reviewed and revised in part I of this work (Kott 1985), whiel also ineludes accounts of the species of these taxa that occur in Australian waters, guides to their identifieation and a discussion of their brogeography.

In the following aceount ol the Aplousobranchia, aspect.s of larval as well as adult morphology have heen invoked to determine phylogenctic
alfinities. Definition of polyphyletic assemblages such as the Clavelinidac and Polycitoridae have heen adjusted in order to arrive at monophyletic groupings wherever possible.

Aplousobranch families are separated from one another primarily on the basis of their respective replieative proccsses, supported hy aspects of colony. zooid and larval morphology. Aecordingly, the new family. Pycnoclavellidae is erected to accommodate genera formerly included in the Clavelinidae. In many taxa the replicative process is not known and, as lor the new family Stomozoidae, it has been dedueed on the basis of eolony and adult morphology. Sometimes evidence from larvae conflicts with a phylogeny based on these deductions. In particular there is uncertainty regarding the family affinities of Sigilliner, Hypodistoma and Polydistoma n.gen.; Sigillina mjöhergi, and Custrdytes, Polycitorella, and the new genus Brevicollus.

As in Part 1, the following account of aplousobranch lamilies is hased on the collections of all Australian and some American and European museums. It includes many thousands of newly
recorded specimens recently collected by the author and her colleagues. The general morphology of colony, zooid and, in most cases, the laryae have been examined and recorded. The histology of these organisms has not been considered in this work.

All specimens for which the registration number is cuted have been examined in connection with the present work. Where a colony is registered in 2 institutions, the second number (in italics) refers to a sample part only.

Abbreviations used to indicate the institution in whict specimens are lodged are as follows: AM, Australian Museum, Sydney. New South Wales: BM, British Museum (Natural History), London, UK; MHN, Muséum Nationale d'Histoire Naturelle. Paris, France: OM. Otago Museum. Duredin, New Zealand; QM, Queensland Museum, Brisbane, Queensland; SAM, South Australian Museum, Adelaide, South Australia; TM. Tasmanian Museum. Hobart, Tasmania: MV. Museum of Victoria, Melbourne, Victoria; NTM, Northern Territory Museum, Darwin, Northern Territory; WAM, Western Australian Museumb, Perth, Western Australia; USNM, US National Museum of Natural History, Smithsonian Institution, Washington DC, USA: ZMA. Zoological Museum of Amsterdam, Ansterdam. Netherlands; ZMC, Zoological Museum Copenhagen, Copenhagen, Denmark.

ACKNOWLEDGEMENTS

The many colleagues who have encouraged my studies of the Ascidiacea from 1949 are relerred to in Part 1 (Kott 1985). Emeritus Professor C. Burdon-Jones deserves, special ihanks for his ongoing support and practical assistance with this part of the project. Dr Robin Millar formerly of the Scottish Marine Biological Association, Oban, Scotland atso continues with his encouragement and interest. The Queensland Museum Board through the Director, De Alan Bartholomai, continues to give its support to this project.

Much of the newly recorded material was taken in the course of major surveys of the fauna of the Australian continental shelf including the North West Shelf and Kendrew Islands (Dr Barry Wilson, Ms Shirely Slacksmith and Ms Loisette Marsh of the Western Australian Museum, supported by Ausiralian Marine Science and Technologies and Crown of Thorns Commitlee grants); the Great Australian Bight, and Spencet and St Vincent Gulfs (Mr Scoresby Shepherd, Mr Nigel Holmes and other colleagues of the South Austealian Fisheries Department, supported by
the South Australan Museum and Austrilian Marine Science and Technologies grants in connection with seat grass productivity and wher programmes): Bass Strait and the Victorian coast (Museum si Victoria supported by an Australian Marime Science and Technologies grants, the Western Port Survey, and various surveys conducted by Mrs J. Watson of Marine Science and Ecology. Victoria), the Great Barrier Reef and the Queensland coast \{the north-eastern fisheries survey conducted by Dr G. Gooden of the Quecnstand State Fisheries Department and Dr Lester Cammon of the Queensland Museum, and the Cleveland Bay survey by Mr Alistair Birtles and Dr Peter Arnold of James Cook University of North Queensland, both supported by Ausuralian Marime Science and Technologies grants, the Abbot Point survey conducted by Professor Cyril Burdon-Jones of James Cook University of North Queenstand for Mt Isa Mines, and material collected by MrE , Lovell while engaged in coral collecting programmes for the Austratian Institute of Marine Science).

The author's own collecting has been supported by grants from the Australian Research Grants Committee (D65 (15386 1969-71: H64: 15386 1975); the Australian Boological Resources Survey (1980-82)) and the Australian Marine Science and Technologies Grants Scheme (MST 83/1320 to C. Hawkins and P. Mather). Ms Lucille CrevolaGillespie and Mr Stephen Cook have heen able and conscientious assistants both in the Eield and In the laboratory. Dr David Parry and Mr Andrew Rozefelds have also helped in the field. Stephen Cook doew most of the black and white figures from the authors sketches. Mrs Petia Woodgate typed the many thousands of wonds that were involved in the preparation of this manuscript Ent publication, from first draft to its final stage

Muscum curators who have contributed to the progress of the present sludy hy their prompl attention to requests for loans of cousideratbe parts of their collection are Ms. L. Marsh (Western Australian Muscuar), Mr W. Zeidler (South Australian Museum), Ms S. Boyd (Museuni of Victoria), Dr. F, Rowe (Australian Museum), Mr G. Anderson (British Muscunt, Natural History). Dr E. Rasmussen (University Zonlogical Musenm, Copenhagen), and Dr A. Pierrot Bults (Zoolugical Museum of Amsterdam), 1 am grateful th them all. Perhaps my greatest indebtedness is to those photographers (bott prolessional and amateur) who provided images of the living organisms it sint, and who have allowed the to use those imatges to illustrate these volumes. They include Graham Edgar (whose photographs of Aseidia chathengeri.
A. sydneiensis and Botrylloides magnicoecus from Port Davey in Part 1 of this work were wrongly attributed), Paul Fredrickson, Rudy Kuiter, Roger Lethbridge, Ed Lovell, Dave Parry, Ron and Valerie Taylor, Gary Russ, W.H. Sasse, and Jeanette Watson. Most particularly I am grateful to Neville Coleman, Scoresby Shepherd and Nigel Holmes whose careful indexation of image to the actual preserved specimen has removed the possibility of error that occurs when identification based only on photographs is attempted.

COLLECTION AND EXAMINATION OF APLOUSOBRANCH ASCIDIANS

Generally species of the suborder Aplousobranchia are more difficult to collect and preserve than are phlebobranch or stolidobranch species. There are several reasons:
I. the test that surrounds the zooids, or in which they are embedded is relatively soft, and this together with the large cloacal spaces (when they are present) make colonies vulnerable to damage and distortion.
2. Possibly because the test is relatively soft and lacks the fibrous, leathery properties of most stolidobranch species, it does not usually adhere firmly by a small part of the surface, or form tough rooting systems. Thus colonies are seldom upright and more often they grow two-dimensionally, over flat, hard substrates to which extensive areas of basal surface or extensive stolon systems form such firm attachments that colonies are difficult to remove. In these cases the colony, lacking other skeletal elcments, has the advantage of the substrate to support it. Exceptions are in genera where species are sometimes (Sigillina), or always (Sycozoa) stalked. In the latter genus the stalk often is long and leathery.
3. Zooids are invariably small and usually muscular. They need careful narcotisation to ensure that their structure is not obscured by contraction.
Thus the collection of aplousobranch ascidians by dredge results in the sampling of large, firm colonies, such as Polpcitorgiganteus. However the great majority of taxa with delicate test, including those with separate zooids (Diazonidae, Clavelinidae, Pyenoclavellidae) or taxa with small or flat and two dimensional colonies (Eudistoma) are not adequately sampled.

On the other hand, although most aplousobranch ascidians occupy cryptic habitats, their bright colours (which usually are not hidden by the ephiphytes or adhering foreign particles that occur in Stolidobranchia) are conspicuous, and
have attracted the attention of SCUBA divers. In the past twenty years, collections by hand, using SCUBA equipment has demonstrated a diversity in the Australian aplousobranch fauna that formerly was not recognised.

Where possible, to avoid damage, specimens should be removed from the substrate. However, occasionally, the whole or part of the substrate with its adhering ascidians can be collected. Sometimes because of the size of the colony, or the strength of its adhesion, it will be possible to sample only a part. In this case the size of the whole colony and the part of it represented by the sample should be recorded.

As well as physical damage and contraction of the specimens the study and identification of ascidians is made difficult by the loss and rapid oxidation of pigments, following their collection, fixation and preservation. Colour notes should be made and colour photographs of the living specimen (carefully indexed to the specimen) should be taken if possible. Notes should also be taken on the arrangement of zooids in living colonies for in preserved material this also is obscured by colour changes, and contraction.

Since most aplousobranch ascidians generate acid on lysis of the test cells (Parry 1984, 1987), specimens should be thoroughly washed in seawater after removal from the substrate.

Menthol crystals are an appropriate narcotising agent for ascidians. More rapid relaxation is achieved by using a very weak solution of MS222 (Sandoz Ltd.). A few grains of powder in 5 ml seawater was made up as a stock solution. About 2 drops of this solution per 100 ml of sea water was found to relax most species rapidly and completely.

When examining colonies with embedded zooids, their morphology, and orientation and arrangement in the colony can be observed in thin inspection slices or wedges cut through the whole radius of a cloacal system or colony lobe, from the cloacal aperture or centre of the lobe to the outer margin, parallel to the long axis of the zooids through whole depth of the colony. To examine them more closely and for dissection, the zooids themselves are often removed more easily from these inspection slices than by any other method of pulling them from the colony. Very small zooids can be examined and dissected in a drop of glycerol on a microscope slide. Sometimes they need to be stained before this is done. Most taxa of the suborder Aplousobranchia are viviparous and embryos are found incubating in the colony. These can be examined by staining, clearing and mounting whole.

Fic: I, Ascidian morphology (diagrammatic): A. stalked, solitary individual divided into thorax $(a-m)$ and abdomen (m-u); B. git loop, showing subdivisions. associated organs. descending (proximal) limh (mu) and atcending limb (u-e). Symhols: at, branchiat aperture; b. atrial aperture; \mathbf{e}, neural complex: d, branchial lertaclen; c. anus; f. rectum; Iv, rectal dalve; g. condostyle: h. stigmalum; i, internal longitudina! vessel; j, atrial eavity: k, parietal hody wall: I, test:

m, oesophageal opsning; n. oesophagus: na. prestomsth lfound anly in some Clavelina spp.l: a, vas deferens; p, stomach; pa, gastro-intestinal duct: pb. gastric tesicle; pe, tubules of gastrointestinal (py/oric) gland; q. gastric suture line: r, intestine; ral duadenal region of gut: ri. mid-intestine; rp, posterior stomach: s, ovary; itestos; u, pole of the gut lonp, v, vasculat stolon: w, test vessels; A, icrminal ampullae

ANNOTATED GLOSSARY

The morphology of aplousobranch ascidians (Figs 1,2) is discussed, and the terms and conventions used in this work are defined below. The morphology of the Ascidiacea has been reviewed by Berrill (1950). Goodbody (1974) has reviewed the physiology and Millar (1971) the biology of the group. The annotated glossary in Kott (1985) should be used in conjunction with the following entries:
adhesive organs: epidermal structures at the anterior end of the larval tronk. Larger larvae have 3 in a triradial arrangement, hut in the small larvae of the Polycitoridae, Polyclinidae, and Didemnidue they are in a median verlical row. Occasionally there are only 2 adhesive organs (Pychoclavella spp., Sigillina spp.. Euherdmania spp.). In some Didemnidae (e.g. Diplosoma multipapillata Kott, 1980) and Polyclinidae (e.g. Aplidium triggiensis Kott,

1963; 19701 the presence of more than 3 adherave organs is probably an adaplive response to environmental pressures. The most simple organs are nun-everting conical ones lound in the small larvae ol' Ciona, the Diazonidac, and solitary phlebobranch and stolidobranch asciltians which, with the exception of a few Poly, arpa spp. (see Kotl 198s) and some Mofrula spp., are all oviparous. With the exception of the Dazonidae, colonial species of all suburders have viviparous larvae with more bomplex everting adhesive organs.

Cloney (1977). in the only study on the fine structure of the adhesive organs of ancidians, investigated the adhesive organs ol Bistapha occidemalis Bancroli and Diplosamia mastonoldi. They are entirely ecpodermal in both spccics, and are essentially the same, consisting fil an axial cone Irom the centre of a cup-shaped protrusion at the end of a stalk. The larval hatenococlic savity sontinues up into the walls of the cup separating is outer (marginal) wall from the inner (parietal) wall. The cup rim has nyoepthelial cells (which contract during the eversion of the axial cone) and anchor cells which hold the larval test firmly in place against the ectodermal epishelium. The parietal wall of the cup and unter wall of the axial conc contans scerctory cells (collocytes) which produce adhesive materiad. The core of the axial cone contains columnar epithelial cells which extend the whole length of the cone and have apical processes extending into a terminal hyaline cap tlat protrudes through an opening in the larval test and forms the inital dttachment ow the substrate. Subsequenty adiesive material is released from the secretory cells of the surface of the axial cone which is extruded through the test. The eversion of the axial cone and the attachment of the larvas to the substrate is a complex process also involving fibrous lamellue from the concavity of the adhesive organ. between the axial cone and the parietal wall of the surrounding cup (see Cloney 1977).

In Aplousobranchia, therc are (at least) 5 basic types ol everting adhesive organs. including the simple axial cones described by Claney (1977) viz:

1. LInvaginated tubes in Pyenociavellidate. Eicherdmania, and Sigillina miöhergi.
2. Simple axial cones composed of central columinar and peripheral celts in the centre of epidermal ellps in which the haemocoel protrudes between parietal and marginal layers of cells. as described by Cloney (loc. eif.). Thesc appear similar in Clavelinidae.

Stnmozoidae n.lam. Silcozora, Distoplia, Hupsismazom, Polycitor. Eudistoma. Cystodives. Pulycitorella, Polyclinidae and Didemntdae. Allhesive organs of this type have stalks of various lengths, from short and thick (in Clavelinidae and Hulozoidac) in long and narrow (in some Polycitoridac. and in Polyclinidat and Didemnidae). The aval cones are shallow and sessile in wide sctodermal cups in Clavelinidae and Stumosoidac; comatal and constricted around their base in deep cotodermal cups in Distaplia. Sucozera and related genera in the Holozordiae and in Cystodytes and Polfcilor (Polycitoridac), wide, flat-topped and mushronm-shaped with a pronounced constriction around the base and shallow celodermal sups in Eudistoma and Podizirorella (Polycitoridac).
3. Complex Miat-sopped ascial platfurms ans ridges composed ol arhorescent groups of columar cells that resemble those of Siudis:oma to some cxtemt, but ape larger and are depressed intu the ectoderm (rather than stalked). These oceut in Sighllinu and Bupodispoma. It is possible that they will be lousid alsu in Polydistomw n.gen.
4 Clonev (1977) Niers to a thick-walled axial vesicle lilled with adhesive in larvac of Eirdistoma rheri Van Name and E. molle Rittet (sec Van Name 1945). Adhesive organs of species al Poflecisor. Eudissoma and Errstumu n.gen. in the present collection are stalked, and have Mat-tripped, rather than conical, axial protrusions with the usual solumair and peripheral cells (see 2., ahove).
5. The tulip-shaped sessilc adhesive organs of Brevicollus wheratus appeas another type. lheir long, double-lagered walls may he the homologue of the ectodern cup of other forms, hut they do not contain an axial protrusion of any sort, and the deep clliptical concavity has apparently filamentuus lamellace resembling those in the sulcus between the parietal wall of the cup and the axial cone of Distaplia (Cloney 1977). The reJationship of these with other adhesive organs is not apparent
apertures- The incurrent (or branchial) aperture and the excustent (or atrial) aperture are the two openings ol the ascidian hody. The rim of tbe branchial aperture is devided inlu 6 lobes in most aplousobrancl taxa except in the Clavelinidas and Pyonoclavellidac (in Whish it is smooth) and in Sycolencs (in which the tebes
are much reduced). The incurrent stream al water, generated by the cilia tining the pharyngeal perforations (stigmata), enters the bramchial sac through the branchial aperture, which always opens directly to the exterior. The excurrenl water that has been strained through the branchial wall. together with faeces and reproductive products expelled into the atrial cavily, leave the zooid through the excurrent (or atrial aperture). This opens directly to the exterior in the Diazonidae, Clavelinidae, Pyenoclavellidse, Sigillina, Polpdistoman. gen., Stomozoidae. Polycitoridae (with the exception of Exostomu), and Euherdmaniinae. The excurrent waler is expelled indirectly, through a cloacal cavity with a limited number of openings to the exterior, in Holozoidae (with the exeeption of Sigillina and Polydistoma n.gen.), Exostoma n.gen., Polyclininae and Didemnidae.

In the formergroun of taxa the atrial aperture is always 6 -lobed but in the latter group only Exostonta n.gen.. and Mymodistoma have hlohed atrial aperlures. The others have an upper lip. sometimes subdivided, which inserts into the test around or along the sides of the cloacal eavity or its apertures. The sides and posterior border of the atrial apertures of these genera usually are smonth.

The number (6) of lobes around the rims of the apertures is relatively stable in Aplousobranchis. The only exeeptions (as described above) are where atrial apertures are adapted to open into cloacal cavities, and where the rims of the openings ate smooth (Clavelinidae and Pyenoclavellidae) There is less stability in this character in other suborders. Phlebobranchia have of or more atrial tobes and usuatly wore branchial Iobes. Stolidobranchia basically have 4 hranchial and 4 atrial lubes (Styelidac. Pyuridae). or 6 branchat and 4 amal lober (Molgulidac), atthough modifications can occur that change these numbers.

When zovids open separately surface features ol the test olten separate incurrent and excur rent streams of water by directing then away from une another. or by taising cloacal apentures ahowe the branchial ones (Kotl 198\%).
anal opening, anus: sce gut, gut lesp.
ascending limb of gul loop: see gut. gut loctp.
asexual reproducton. sec cloacal systems, colonics, epicardium.
atrial cavity; the cavity, lined by cetoderm, formed (io the Enderngona) hy lusion of patreal
invaginations Irum the dorsum to surround the sides of the pharynx. Ciliated pharyngeal perforations open into this cavity. In Aplousobranchia the gat tonp and genads are posterine in the canity and not embedded in the parietal body wall alongside it, as they ars in Stolidobranchia and Phlebobranchia
branctial folds: such ds those found in the Stolidobranchia, do not necur in the Aplousobranchia, in which the pharyngeal wall is always flat.
branchial papillae: papillae vertieal to the plane of the pharyngeal wall, which support the internal longitudinal vessels. Both neeur in Cionidae and Diazonidae. The minute papillac on the transverse vessels of Protopolychintum Millar, 1960 and Poldetimum may he vestges of the vertical papillas. There are no papillas in other aplousohranch lamilies
branchial sac: the pharynx of an ancidian. perforated hy rows of stigmata in colonial ascidians. as replication becomes more prolific and moids become more numerous, themr progressive reduction in size and increasing simplification is reneeted in the branchial sat. In Aplousobranchia numerous stigmata in many rows and internal longitudinal vessels are present only in the Cionidar and Diazonidae. but in wher taxa the inten nallongitudinal vessels are lost and stigmata decrease in number as gooids become smaller. Clavelinidae and Pollcilor sometimes have relatively numerous stigmata in numerous rows but internal longudinat vessels are absent. The number of stigmata per row remains relatively high in Sigillina and Pyenodavella. atthough the number of rows is redueed. Sigillina has onty 3 rows of stigmata and some Prenoclavelhe spp. have only 2 (see belaw). Both the number of rows and the number of stigmata per row is most reduced in the small monids of Eurderomas. (See also branchial papillae, internal longitud. inal vessels.).
branchlal tentacles: stumpy or tapering endodermal structures, in one or more circles at the base of the branchial siphon. In Aplousobranchia they are always simple withous side branches. They occur in more than one circle in many species, viz. in Clavelinidae and in Euclistoma. Eudistoma may have up to 9 circles uf lentacles in a wide band at the base of the buanclial siphon.

Rruadine: sec incubation wh embryus.

budding: sec replication.

cloacal cavifies, - syatoms; arrangenatots of embedded pooids around eloacal cavities in the test. inton which thear atrial apertures open, rather than opening directly to the exterior, The branchial apertures maintain their separate independent openings directly to the exterior: The degree of integration of the colony can be measured by the form of the systems and the extent to which the poovids are orgurised into systems. Any cloacal system indicates a latir degree of integration.

The most rudimentary cloacal systems are
 porella and (ustodyres but not in Polsciror) in which moids are arranged jn circles (Fig. 2c), then atrial apertures toward the centre of the ciecle where the excurent streams al water reinfore one athother. Sometiones the atrial apertures open into at depression in the cemere of the circle ($\mathbf{F i g}, 2 \mathrm{~d}$). This is a forerunner of the most smple cloasial system in which a circle of zooids surmounds an actual chacal cavity Which reecives exeurtent water from the athial apertues which open into it. This water leaves the colony through is cloacal aperture (somustimes referred to as a common cloacal apeiture) in the surface test that rools over the cavity (Fig. 2e).

The evolution al cloacal :ystenis includes their extension lrom circles to ovals, and subsequently to long and sometimes brunching systems of cialals, which radiate away from the cloacal aperture beneath the surface of the colouy. In the highly integrated colonies of Siroena, long cloacal canals, lined on tach side with a low of zooids, extend parallel io one another down the sides of the colony. In Didemnidae, cloacal cavities are sometimes Amost continuous spaces that surround the zooids. or clumps of zooids, etther at thoracic level, or cxtending into the lower balf of the colony to surround the whole length of the zooids with decp spaces (sec Kott 1002). I11 Atriolum and heproclinides (Dislemmadat). Hyportisoma (Holozoidae) and Exustoma 11.gen. (Polycituridae), Jong. posteriarly oricnted, atrial suphoms from the pustero-dorsal part of the thorax earry excurrent water to cloacal spaces and canals at abduminal or cren poxlerum abdormanal level

Holoznidae have a great range in the develonment of syatems. In Sigillime the atrial aperture of teach rosid opens sepatately th the
exterior. hut mosi species have a degree of integration in the colony. Usually they have at basal stalk and a terminal head with the aoods opening around the head und all focing the same way. Their endostyles (ventral surlaces) are below the dorsal surfaces. the branchial apertures face down toward the statk, and the atrial apertures are directed upwards, toward the top of the colony (see Kull 1989). Thus, allonogh the onlony could be said to comprise a colonial system. cloacal systems are not formed. similarly the new genus Polidistomto. with branchas aperfures on the undersurlace wh the fronds of the colony and the atrial apertures uppermost, can be suat to have colonial, but not cloacal. systems. Similar systems are present in certann genera ol the Euherdmaniinace (viz. Rifrevelfa),

In the Polyclininat (Polyclinidac), most speces of the Didemnidate, the hoblopond gernera Neudestoma a.gen, and Hypodistoma, and the polysilurid Rewstoma n.gen. the cleateal systems are extensive, and involve large numbers of small rooids. The shate and sime of these cloacal systems and the eolonies themselves Jack the regularity of chose in Distaplia and Sycu-oa. being more affected by environmental lactors and age.

In Distaplia and Sipnosoa the disposition al sooids is ondered. cloaeal systems are reaulan in swe and shifet, and are systematically arranged in the colony. Eeplication is prolifice. and gamete production is synehronised. It is probitile that Sirozoa spp., with certan didemnid species. uppesent the most highty integrated colonics in the Ascidiaceas. In stolidobranch uscidians. cloacal systems oceur anly in Butryldinate. Sometimes they are enmparahle with lae extensive branchang xystems found in Polyclininae. Only accasounallys (Botryllosider magnioneres) do blocy acheve the degree of integration that occurs in the Siveroba and in most Distaplia spp.
colonial systemse an ordered rather than random arrangement of cooids in the colony. Colonial systems melude cloacial systerns (sce above). In many species of Clavelinidae, Pyenoclavellidae. Sigillina sppe. Pafidisromm, stomozoidac. Polycitoridace and Puherdmanimace (Palyclinidatco), however. in which the sowids maintain their independent atrial aperture dareet on the exterior. colonial systerms are formed that do not involve a conmon cloaca. In these systens zoods are regularly arranged, sometimes (but nor illuays) in stalked colonies. with their branehial and atrial apestures co-ordinated with

1.6. 2. Evolusion of cloacal svstems (diagrammatic): a, partiatly embedded ooids, no kystems (Diazona. Cluvelina and Phomelapella); b, completely embedded zevids forming colonial, but not clogeal, systems with 6-lobed at fisl siphoms upening separately to the exteriut (Cluvelimasp. Nephthetis faseicularis. Sigillina spp., Polydistoma 0.gen.. Stomozod. Polyction spp, Fiudistoma spp.): c. woblds arranged in circles with 6 -lobed atrial siphons opeaing in the centre to form incipiem elonacal systems (Eudistoma spp., Polycitorella spp., Cystadyes spp.): d. somds with 6 -lobed atrial siphons openine thio rudimentary (Ludistoma spp.) to extensive (Hypodistoma spp., Exos(ema n.gen.) Efoacal cavities; e,f. fooids furmed into well developed cloacal systems, their wideiipped excurrent apenings often expesing their tranchial sack directly to the long. snmetimes branching cloacal canals or caymes, each of which opens to the exterion by a single cloacal aperture, $e_{\text {, }}$ zooids with gonad in the gut loop (Dislaplia, Sicazoa, Didemnidae), f, zooids with genads in a posterior abdomen (Potyctioidac) Symbols! cec common cloacal cavity, the areows show divection of current ilow
respect to environmemtal facturs (such as direction of curren llow), there ano inditation af even a moderate degree of integration in the colonies of other taxis in the Diazonidac. Clavelinidac and Pyenoclavellidac in which the rooids, athough colonial, being joined by basal stolons, or partly (Fig 2h) or completely cmbedded, do not form systems.
colonies: With the exception ol Ciond. certain specics of the Diazonidac (viz. Rhopalaras.pp.) and Clavelinias (Clavelina dagisa, C. astrearium, C. meridionalis, C. viola, C. miniata), all aplousobranch ascidians are colonial. The monids that make up the colony are produced by replication of the oozooid (primary zooid) usuatly following metamorphosis. Sometimes replication begins in the larya, buds being isolated from a vegetative stolon contaning an extension of the epicardial sac in the region of the ocsophagus (Siccozoa. Distaplla and Hypsistozoa in the Holornidac and some Didemnidac), although these buds do not always persist to form definitive nooids (sce Berrill 1450); Brewin 1956h), the varinus budding processes have been summarised by Berrill (1935h, 1950) and Kut (1982b). Replication Occurs in sall aplousobranch ascidians except (iona and Rhopalopa. Watanabe and Tokioka (1973) have showa how the solitary sooids al Clavelina miniata develop from buds that subsequently move away from the parent avoid. Cluvelina meridionalis replicates develop from the vascular stotoms in the staks that persist after degeneration of the parent /oonid (sce below). Regeneration of thoraces lrom the ocsophageal region of both Ciond and Rhopuluea may be an carly stage in the evolution of the replicative process and the development of colonies in Aplousobranchia (see Kott 1982b; sec also colonial systems, cloacal systems and replication).
descending limb of gul loop: see gut loop.
distat: the end of an urgan or structure toward Which the contents or products move, or which is farthest from the base or poim of urigin see alsu proximal).
dorsal lamina, - languets: pointed. triangular projections from the transverse vessels of the branchial sac where they cross over the dorsal sinus. They are in a line parallel and to the lelt of the dorsal mid-line in must generas of the Aplousobranctia. A plain-edged fold of the pharyngeal wall forming it dorsal lamina as in many lamilies of Phlebobranchia and Stotido-
branchia does not accur in Aplousobranchio. Berrill (1950) believes that the presence of dorsal languets is a mure primituve condition than the continumes fold.
dorsal tubercle: see ncural duct.
duodenum: see gut loop.
endocarps. thickings ur flesly outgrowths of the parietal hody wall that occur nlien in stoplidebranchia. They are not founds in Aplousubranchia.
epicardial sacs, epicardium: paired endodermal sates that evaginate frout the posterin-ventral pant of the pharyn. In cioma these saes develops following metamorphosis (see Berril 1950) The telt are envelopes the gut and gonats. and tac right une the heart and periwardium, In Ciona they maintain their unenings imto the pharynx. one opening on each side ol the mid-line in the vential part of the retropharyngeal groove. In the Didemidac, and the genus Euhurdnoums (Polyclinidne), the sacs remain separate liom one another. In the majority of other taxa they fuse into a single epicardium which extend along the length of the abdomen (where it is associated with the oesophagus and stomach) (1) terminate around the pericardium at the posterior end of the abdomen (Diazonidue, Clavelinidate, Pyenoclavellidae, Polycitoridael. and at the end of the posterior ahdomen (Polyclinidac with the exception of Euherdmo. nia). In Fuherdmania, as in (iond, one of the 2 sacs is associated with the gut loop in the abdomen. The other extende the length of the posterior abdomen to terminate around the pericardium and heart which, in Eibherdmanta. is in the posterior abdomen (Trasun 1957).

Although in Holozoidac, the cpicardial sacs are believed to luse, there are two in Sistillina grandis.sima n.sp, (see below), The lefl sac lies in the abdomen and. again as in Ctoma, it is this left sace that terminates nver the pericardium. The right sac extends the length of the vegetative stolon as is usual in the Holorodae where the fused epicardium extends beyond the heath to form a narrow lumen in the vegetative stolan the presence of the epicardium in the vegetative stolon distinguishes that organ froin the large vascular stolon of the Cliavelinidite and Pyenoclavellidue.

It was the presence of the cpicardium in the vegetative stolon of the Holoroidae that led Caullery (1909) to suggest the stolon was the homolague of the posterior abdomen in the Polyclinidue. Hoverer these structures diller.
not only in the absence of the gonads and heart from the holozoid stolon, but also in the processes by which they respectively form the replicate zooids that are added to the colonies (see Caullery 1909). In the Didemnidae the sacs are much reduced in length and persist as two small vesicles in the oesophageal region. As in all other groups except Clavelinidae, the epicardium in Didemnidae comprises the regenerative tissue in the replicative process (see Berrill 1935b, 1950).
In Phlebobranchia the embryonic epicardium is the source of the excretory vesicles that lie around the gut loop. In Stolidobranchia the epicardium is probably also involved with excretion (see Berrill 1950, and Saffo 1978 for an account of the kidney in Molgulidae).
excurrent aperture: see apertures.
fertilisation: occurs externally in Cionidae and Diazonidae (as in most Phlebobranchia and Stolidobranchia). All other Aplousobranchia are internally fertilised, either in the oviduct or in the atrial cavity (see also incubation of embryos).
gastric caecum: a small diverticulum of the stomach which often is present in phlebobranch and stolidobranch ascidians. It is present in juvenile Ciona (see Millar 1953a) but not in other aplousobranch taxa.
gastric folds, - ridges: parallel longitudinal glandular swellings in the internal lining; or the folds of the whole stomach wall. These occur in aplousobranch taxa Ciona, Rhopalaea, some Distaplia, and Polycitor (see Key to the genus Polycitor, below), Stomozoidae n.fam., Euherdmania, Ritterella and Aplidium.

In Stolidobranchia, glandular folds occur in Styelidae and Molgulidae and in some Pyuridae. However, in the latter family Pyura has a characteristic, large, branching, liver diverticulum which may take the place of gastric folds. In aplousobranch ascidians there is neither a gastric caecum (as in Styelidae), nor a liver diverticulum (as in the Pyuridae and Molgulidae), nor any other diverticula of the stomach wall other than the gastric folds or ridges that occur in the few taxa referred to above.

Although it is primarily smooth, the stomach wall sometimes is folded into 4, probably as an artefact of its preservation, in Pseudodiazona, some Rhopalaea (e.g. R. tenuis), Clavelinidae, Pycnoclavellidae and Sigillina. The stomach wall is completely smooth in Polydistoma n.gen. Hypodistoma, certain Polycitor
and Distaplia, Sycozoa, Eudistoma, most Polyciorella, Cystodyıes and Exostoma n.gen.
gastric reservoir: see gastro-intestinal gland.
gastro-intestinal gland, - connective: as in phlebobranch and stolidobranch ascidians, a gastro-intestinal (or gastric, or pyloric) gland is present in the Aplousobranchia. The gland has tubules that encircle the ascending limb of the gut loop adjacent to the stomach (which is in the descending limb). These tubules join into a single duct (gastro-intestinal connective: Kott 1985) which opens into the distal end of the stomach at its junction with the duodenum. Sometimes the duct expands into a spherical reservoir about halfway along its length.

The gland probably is present in all ascidians (Berrill 1950). It is known to occur in Ciona, Perophoridae, Corellidae, Ascidiidae, Styelidae, Pyuridae, Molgulidae, and in Clavelinidae, Holozoidae, Polycitoridae, Polyclinidae, and Didemnidae (see Millar 1953a, Goodbody 1974), although it has not been reported for evcry species. However it often is very inconspicuous. It is particularly well developed and conspicuous in Eudistoma spp., with numerous, long tubules clustered around the outside of the ascending limb of the gut loop.
gonads: Gonads of most aplousobranch taxa are in the abdomen, in or beside the posterior end of the gut loop. Exceptions are Polyclinidae (in which they are invariably in a posterior abdomen behind the abdomen), certain Distaplia (in which they are in a posterior abdominal sac that is connected to the side of the abdomen by a narrow neck), and Hypsistozoa (in which the gonads are in the top of a posterior abdominal stolon).

Most aplousobranch ascidians are hermaphrodites. They are either protandrous or protogynous, and the zooids in one colony have gonads at more or less the same stage at the one time. For instance, in Sigillina australis and S. mjöbergi the eggs are fertilised and begin their development before the testis is mature; and in Distaplia florida n.sp. and D. viridis the testis matures before the ovary. With one exception (Sycozoa anomala Millar, 1960), Sycozoa colonies are dioecious, at any one time all the zooids being either male or female. Nevertheless it is not known whether or not the colony remains the same sex through its life.

Gonad and gamete size, especially ovaries and eggs, change markedly throughout the Aplou-
sobranchia. Ciona produces many small externally fertilised eggs, and so do diazonid species. In other families ovaries are reduced in size as, with replication, the zooids become smaller. Eggs are larger, fewer and internally fertilised as the increasing integration of the colony accommodates incubation of the embryos, either in the zooid or in the colonial test.
Testes also reduce in size with decrease in zooid size, however, they do not reduce quite as markedly as ovaries do; and although follicle numbers are reduced. their size often compensates for this, the male follicles often becoming larger as their number falls (see Distaplia). Since the Aplousobranchia are almost universally internally fertilised and viviparous, the concentrations of male gametes in the surrounding waters need to be maintained.
The increase in the number of zooids through replication compensates for smaller gonads in each zooid (see also incubation of embryos).
gut, gut loop (Fig. 1b): In aplousobranch ascidians the gut is always entirely posterior to the pharynx. It forms a narrow vertical loop in most taxa except Cionidae, Hypodistoma, Polydistoma and the Didemnidae in which it forms a more or less horizontal loop. The descending limb of the gut loop in Aplousobranchia is from the oesophageal opening to the point, usually just proximal to the rectum, where the gut reaches the posterior end of the abdomen and turns into the ascending limb at the pole of the loop. The ascending limb of the gut loop runs beside the descending limb to terminate in the anus, opening into the atrial cavity.
The anal opening is well anterior near the base of the atrial aperture in Ciona and in the Diazonidae, toward the posterior end of the atrial cavity in most other taxa and usually between the third and fourth or second and third rows of stigmata in Holozoidae and Eudistoma, respectively. Only in Pycnoclavellidae is the anal opening at a level with the oesophageal opening, at the posterior end of the atrial cavity.

Subdivisions of the gut found in Aplousobranchia are an oesophagus with or without a prestomach swelling in it, a stomach, a duodenal area, a mid-intestine often with a posterior stomach swelling in it, and a rectum which terminates in the (usually) bilabiate anus.

The prestomach is known only in Clavelinidae, having been reported in Clavelina cylindrica, C. moluccensis. C. nigra n.sp., and Nephtheis fascicularis.

The oesophagus is long (occuping most of the length of the long abdomen) in Pycnoclavellidae, Polycitoridae (with the exception of the new genus Brevicollus), and Euherdmania. In all other taxa the oesophagus is of moderate length and the stomach is more or less halfway down the abdomen rather than at its posterior end.

Berrill (1950) ambiguously referred to the cylindrical region immediately posterior to the stomach as the posterior stomach, here called duodenum. It is especially long in Eudistoma, but is absent in Nephtheis, Euclavella n.gen., Sycozoa and the Didemnidae (which have no divisions of the gut distal to the stomach).

The narrow mid-intestine (sometimes with a posterior stomach along its length) intervenes between the duodenum and the rectum. In certain Distaplia, Hypsistozoa, and Neodistoma n.gen. a distinct rectal valve is at the junction of the rectum and the mid-intestine. The posterior stomach is in the otherwise relatively narrow mid-intestine of Pseudodiazona, Clavelinidae (in the descending gut limb), Pycnoclavella (in the pole of the gut loop), Polycitoridae and Stomozoidae (in the descending limb), and Sigillina, Hypodistoma, Polydistoma n.gen. (in the descending limb). There is no posterior stomach in Cionidae. Rhopalaea, Nephtheis, Euclavella n.gen., Distaplia, Hypsistozoa, Neodistoma n.gen., Sycozoa, and Didemnidae.
The ascending and descending limbs of the gut loop in Aplousobranchia are not homologous with those of Phlebobranchia and Stolidobranchia. In the latter two orders (in which the gut is bent up alongside the pharynx) the oesophagus, stomach, and proximal part of the intestine comprise the ascending limb. The intestine curves around in the pole of the loop and the descending limb consists of the distal part of the intestine and the rectum.
heart: \ln Aplousobranchia the heart is a straight, curved or V-shaped tube usually at the posterior end of the body, It is at the posterior end of the abdomen in taxa dealt with below. In Euherdmaniinae it is sometimes present half way down the posterior abdomen, and in Polyclininae it is at the posterior end of the posterior abdomen (see Berrill 1936).
incubation of embryos: All Aplousobranchia except Cionidae and Diazonidae are viviparous, brooding embryos and releasing tailed larvae. In Clavelinidae the ovaries are relatively large, producing up to 100 eggs at a time. These are fertilised and are brooded in the distal end of
the uviduet which, in some species. Jies horizontally across the posterion end ol the relatively roumy atrital castity (see (laveluna rohusia $12.5 p$). The larver complete their development tree in the allial catity. In a few species (c.g. C. moluceensis) there is a pouch at the distal end of the oviduet in which the embryos are fertilised and brooded. In Pyenoclavellidac, which have a long oesophageal nech and generally smaller zooids and smaller ovarien than those of Clavelinidae, the eggs mature sequentially. They are tertilised at the base of the oviduct, and develop as they move up the long neck of the zooid loward the attial cavity Fggs are alan fertilised at the base ol the ovinust and develop as they move up the nenophagetal neek in Pobecitorella and Cratod tes, completing their development in a brood porsel it the top of the abdomen.

Berrill (1935a) believed that fertilisation at the base of the oviduct wals chatacterstic also ol Pobjecitor and findivoma. Howevec. this is the exception rather than the rule in these diverse genera. Fertilisation is as the base of the oviduet in the Arctic Pollegror virews Sirs (see Berrill 1948:1) and in Eudispoma olianceum (see Berrill 1947hl. Of the 14 spectes wl Eudistoma documented by Van Name (lla45). only E. clorum appears to have egery fertilised at the proximal end of the oviduct (see Van Name 1945, fig. 57). Most of the other species have eggs and cmbryos a dilferent stages of development crowded in the atrial cavity where lertilisation prohahly takey place. Similarly, in the Ausiralian species of these ecnorta fertilisation usually is in the athial catrity, and is ill the oviduct only in Pohritor cirress and P. ammulus n.sp. In Fiudispoma only fow cges are produced and they are lertolised and brooded in the atrial cavity of the small, but mumemus zooids. In zonids with the larval trunk ebout I mm long. anly one on two cmbryostre brooded at a time. Up to 8 embryos are lound in the atrial cavity of each zooid in those species with particularly small larvae. in which the tronk is not more than 0.5 mm (e.g. Eudisona donysantm, 1: la!sami), Ihus in Eudistoma the number al' cges produced and embryos brooded hy wach rooid is relatisely low, and is directly relited fo the size of the zoulds, athd inversely related to the side of the larvac. In colonies in waich Ho rate of replication is fost the large number of aoolds producing ciges may well compensate for the small number that each mond produces.

In Holoroidat a brood pouch is partially isolated from the rooid, allowitg the embero
to incutrale the the lest modependently at the sonid. A long inculbation time is thus pussible whthos restracting the lunctions al the mond Futher. in somegerieral Dispapher and Sicemod)
 rather then being expelled through the atrial aperfure. Jherfore the necessty lor cye and embeyos to remain small is removed. In this lamily ovarres produce lew, hat latge exge. combryos and larsue some of the largest larsate hnowh in the Ascidiucea (uf) to 4mom in Sigillinat; and in the tarvace ol Distaplia and Sitwon the adult orguns are heller developed than in any whe taxon. Replication is alae rapid and the lirge mumbers al pooids in each colony all produce eges. Thus the embryos produced by a laborobl collong are laret. numerons, atn be bronded for is long time. and the addule organs of the vozoovid (phimary eooid) and somelimes also blaslosocils ate well advanced before release of the larvae. These large larvale do nol swial frecly lor very long. and their ehances of secruitoment far away foom the purent colony appear minimal, unlews the colous itself in uprooted and moved around in the plankton (as it is in simoroar xpe.).

In some species (Sigilline grumdissimos, Hypordistomen vastume and Distophio metmerte fava) there are thnormally large eges whach ruptuse from the abdomen followitg fertilisaLum presumatly at the hase ol the oviduct. and the embryos incubate free in the vert as they (lo in atl getma of Didemmidac. However. in Palyelininate eges are lertilned and ernhryos incubate inshe utrial covisy In 「uherdmaninat. as bately of strateges for lemtilisation and ineubation of embryons retleet the polyphylete wature of this sublamily. In Euherdmanio (like Promalaw lat Iertilsation is at the hase of the usiducs and cmbryos incubate as they pars up the long oesophage:al neck; 111 Psowedodisummer (like Sigillma) a hrood ponch is attached to the posterodorsal comme whe thomas and in Romerella lertiligation is 10 the atrial easty (as in l'olycliminat).
incurrent aperture see aperteres
Internal Inngitudinal vessels: vessels on the inner sultace of the pharyngeal watl, running parallel 10 it lang ithis. These vessels run owet or between the stigmata. They are present in all phlehohounch and stolidobranch ascidians ant in Cionk, and Daronidas. Vestiges ol the papillac that support these vessels persise in the hranchial sate of some genera ol 「uherdmanianse (c.g Protopolsclinum Mallar, 14t00 and Poluchmum (sec branchisl papillae).
larvace All aplousohranch ascidians except Ciona and the Diaronidac are viviparous. Larvac are liherated loum the adult monds or eolany with lully developed larval organs (tail. cerchral vesicle, and adhestve organs.) and at least partially developed adult organs (branchial and athial aperturce. branchial sas and gut louph.

Larval ectoderm is particularly spectalized. with secictory functions associated with Iarval sollement and the synthesis of test. Cloney (1977) has investigated the line structure of larval adnesive organs, and has demonstrated (in Distaplia wetaderalis) finc extensions. projecting liom the ectoxtermal cells into the est to anchor it against the ectodem. and to caldy secretions to the surlace Simblar extersions al larvibl exoderm l'rom other parts af the larval trunk have been obsenved in many taxis during the course of the thas study vie. in Sycoeras (S, hervicauda n.sp.. S. pulchra). Sigillita (s). errundissima m.sp.), Pohlecitor (P. Hamduridws). Eitalistomar (angolanumg group. and 5 . incohbum n.sp.) and in Brevicollus n.gen. These extensions have lerminal vesicles than often ate conspievous in the surface test and bhseure the structure of the larvas. Other cotudermal projections mots the lest have been ohserved around the apertures of the oozooid il Eediveomer carnesum n.sp.. f: wratum and E. purpurcum ins. I he larval rastrum (see Kont 1980, 1982a) of cerlain mplescoma, in which Prodherom symbionts are transfered from the parental cloacal cavity to the mext generation may he formed hy similat ectodermal extensions ovel the pusterion end of the lasmoerel. Ihe lone structure and the functions of these extensions deserve investigation.

Thew are hasically 5 different types of larvace. each with characteristic adhesive organs (xee ahove), bnewn in the Aplousobranchit. Generally each is characleristic of a taxon or a group of taxa. However, often there ate anomalous species whll larvae that do not conform. and the phylogentic signilicance of the dillerenees between these larvae is not vet understond.

The known larval bypes are:

1. The smatl, undillerentiated larsate ol Ciona and the Diazonidae develop from extermally fertilised egg. Shoy hawe 3 sessule triradially arranged adhesive organs at the unterior end of the laval trank. Adult organs remain reliatively undillerentiated urial settement and metamorphosis. The lurva ty invariably small, its trunk heing athut 0.1 mom long (sece Berrill 1950).
2. The moderatcly large. well developed
larvae of Clavelinidac. Distunha. Hupstislozod, Syeuzore and Stomozoidate atre all relatively similar. They have 3 triradially arranged sessile or stalked, adhesive organs on ad common stalk or plate that is connected to the developing oozooid only by a ventral stolon. The frontal plate (in Clavelinidue) and the stalks of the adhesive organs (in Distuplia and Hypaisf(ozou) are often expinded into rounded swellings (ampullae).

Despite these simitarities, differences exist in larvac as in adulls, and a close plylogenetic relationship is not proposed between Clavelinidae and Holozoidac.

The smaller larvae known in this group are in the Clavelinidae with a trunk that is 0.7 mm long (Clavelina auspralis, C. fecunda). but more often they are Imm ol inore. There are only 2 rows of sugmata in many of the species (C australis. C. ferdula, C. molwerensas and C. hawdinensis) while others have 4 rows (C. meridi(malis, C. olivan.sp. and C. ruhustan.sp.) or more (\mathbb{C} psewdohnulimonsis) J.arvate have many fewer stigmata per row than the adult cooid and the gut loop is seldem dillerentiated.

Larvae of Disiaplia and Hypsistozona have a larval trunk seldom less than 1.5 mm long and often more than 2.0 mm . and they have better developed adult organs than those of Clavelina. The adult complement of 4 rows of stigmata is present. the gut loop is well formed and blastozooids ure present in many apecies.

Sbou-on larvate are simplifjed, with trunks only about 1 men long. no ampullary exparsions Irom the stalks of the adhesive organs, no ocellus. and although the epicardial saes are often very conspicuous, without as many blastorooids as Distuplia and Hypsistazoa. However, the adull organs in the oozooid are as well developed as those in Distaplia and the axial cone in the adhesse organs is large.

Larvac of Clavelina dugpsa and C. hrossibenssis (Millas. 1977) are unnsual having apparenlly lost their adhesive argans. sthonagh they retain the lrontal plate. The small (0.5 mm trunk) larva of C. Decudimensis is also untsual. lacking a stalked, liomas plate and a collar, ur satcer of cells around the shoct-statked adheswe organs. This may he a primitive condition. in which simple adhesive organs
resembling those of oviparous forms are present. althougl they project on short straight stalks rather than being sessile. They do nat have ampultary swellings found in other chavelinid larvate.
3. The relatively small larvat ol Pollector and Eudistoma (Polyetoridae). and most species of the Polyelinidac, have a larval trunk not more than 1 mm long and stalked adhesive organs present in the mid- vertical line anteriorly. Conieal, sometimes hilobed eetodermal ampullase are present in the anterior mid-line alternating with the adhesive organs, and or in one or more rows along each side of them (especially in Eudirroma app.). Polyclinidae have epidermal vesicles in the larval tent as well as the ampullae. Adult organs are moderately well advanced in the larvac. athough not as well as in the larger larvac of Distuplica, Syeneroa and Hypsimmzoa. There are usuatly 2. but occasionally (in certain Eudisfoma) 3, rows of stigmata.

Didemnidac and Cyserdues (Polycitoridae) also have harvae of this general typt. although their adhesive organs have conical protrusions rather than the flatcopped ones of Folscitor and Euclistoma.

Polycitor anmuhes n.sp. and P. circes do not have the same tarvae as other species in the genus. Instead they have triradially arranged adhesive organs. They resemble larvac of Clavelina haudinensis, and possibly reflect the common ancestry ol aplousobraneh ascidians from a predialzonid ancestor.

Cyrodytes has a circular perlorated fold of test surrounding the stalked adhesive organs. It may have evolved from the polycitorid larval type.
4. The genera Sigillina and H!podistuma contain the largest larvar known in the Ascidiacea (up to 4 mm long larval trunk). They have 2 or 3 unusualty large adheswe organs in the anterior mid-line. Adhesive organs are scssile, on a fromtal plate sonnected to the oazooid hy a ventral stolon in /hprordistoma. In Sigillima the anterior end of the larval trunk (which contains the larval athesive organs) is separated from the oozooid by a waist. Adhesise organs are on short thick stalks and surrounded by ectodermal vesicles that arise from the ectoderm around the base of these statks. just in front of the vuist. Adult organs in these large larvae.
are not well differentiated. The 3 rous of stigmata are present, but the gut limp usually earnot be distinguished. These farvae have shor tails and eould be pros swimmers, probahly causing population isolation. resulting in relatively numerous speeies in this southern liemisphere group of generit.

The large larva of Sigillina mjahergi. with 2 deeply invaginated ubular adhesive organs (like those of Pyenoclavellidae). is anomalnus. suggesting Sizillina. as presently defined, is polyphyletie.
5. l.arvace with adhesive cells in the base of deeply invaginated tuhular adhesive organs which evert on settlement occur in Pycnoclavellidae, Euherdmanirs and Sisillina m/obergi. These larvac are moderate wh targe (0.7 in 2.0 mm long (runk). They hate 3 (triradially arranged) or 2 (in the anterior verteal mid-line) adhesive orgatss. Sometimes there are deep longitadinal furtows in the ectoderm around the anterior half of the tronk (ampullae: Trason 1957 and often the otolith is absent. The conzonid is not always well advanced before setulement, usually the gut lonp is not differentiated and only one or 2 rows of stignata can be seen. Execptions. are Pbenochavella detorted with fors of stigmata and Elwforvella n.gen. chasfarmix with 4 rows. Both have 3 adhesive organs, a well differentiated gut loop. and meither have an otolith.

These larvae have no obvious morphelogical allinaty with any of the othergrouns. except the primitise cionid-diazonid larvae. They may indicate an origin from forms with a scssile group of adhesive cells which subsequently invaginated into the larval haemocoel. The larvae may indicare a relationship hetween Pyenoclavellidias and Ewherdmanininc, and they are cridenee of the potyphyletic nature of the latter suh-family

In all incubating aplousobraneh laryac the tail winds around the mid-lime. As it extends up the anterior face of the trunh and (il long enough) back along its upper surface it pusses to the right of the adhesive organs (if these are in a vertical line) and the sensory vesiele. If adluesive organs are triradially arranged 2 are on the left and one is un the right of the tatl. (See also adhesive organs).
neural complex, - ganglion, - gland: a closcly associated neural ganglion and gland beneath the cpidermis in the intersiphonal region. In the Aplousobranchia (as in the other enterogonid suborder, Phlebobranchia) the sometimes flaskshaped neural gland is ventral to the ganglion, and its duct opens directly into the pharynx in the mid-dorsal line at the anterior end of the dorsal lamina. In most Aplousobranchia the opening of the neural gland is a small, inconspicuous, sessile, simple vertical or horizontal slit, or pit. Ciona is the exception, the opening of the gland (the ciliated pit) being complex and folded, and opening on a tubercle as it does in phlebobranch and stolidobranch ascidians (see Millar 1953a).
oviparous: externally fertilised (sce also viviparous).
proximal: the end of an organ or structure away from which the contents or products move. (See also distal).
pyloric gland: see gastro-intestinal gland.
rectal valve: two backward-projecting caecae at the proximal end of the rectum, found in certain Distaplia and in Hypsistozoa and Neodistoma n.gen.
replication: the vegetative process whereby clones of adult zooids are produced to form colonies. One or another process of replication occurs in all aplousobranch families except the Cionidae (see also cloacal systems, colonies, epicardial sacs; and Berrill 1935b, Kott 1982b).
retropharyngeal groove: the groove that connects the postero-ventral end of the endostyle with the postero-dorsal oesophageal opening.
spicules: small (0.01 to 0.1 mm diametcr) . calcareous (calcite) crystalline structures found in Didemnidae and in Polycitorella and Clstodyes. They appear to be synthesised in localised regions of the test where it is in close contact with the zooid epidermis on each side of the ventral mid-line. The site of spicule formation in Didemnidae is well documented (Lafarguc and Kniprath 1978) but that in Cystodytes and Polycitorella is less certain. Spicules are plate like (Cystodytes), star-shaped (Didemnidae, Polycitorella), or spherical (Didemnidae, Polycitorella).
vegetative stolon: see epicardium.
Suborder APLOUSOBRANCH1A Lahille, 1887
The suborder contains families of the Ascidiacea in which the body is divided into the thorax
(containing neural apparatus, branchial and atrial apertures and pharynx surrounded by the atrial cavity) and the abdomen (containing gut loop, heart and gonads). The epicardial sacs, developed in the embryo as outgrowths from the posterior end of the pharynx, have a regenerative function. They persist as sacs or remnants of sacs in the adult abdomen and sometimes extend into a posterior abdominal extension. Most species of the Aplousobranchia are colonial. With the exception only of the Clavelinidae, the end odermal epicardial sacs are the tissue from which all body organs of replicated zooids develop following horizontal division of the zooid at one or more levels posterior to the thorax (Berrill 1935b). In Ciona and in most Rhopalaea the generative role of the epicardial epithelium is confined to the repair of parts of the body following loss or damage, for in these solitary taxa vegetative replication does not occur.

In Clavelinidae replicated zooids develop from isolated terminal ampullae of test vessels in the colony stalk (see Berrill 1950). In the few Clavelina that are solitary, replicates either are separated from one another following their formation (as in Clavelina miniara Watanabe and Tokioka, 1973 and possibly (. oliva n.sp.), or they develop following resorption of the parent zooid, as in Clavelina ostrearium (Michaelsen, 1930) and Clavelina meridionalis (Herdman, 1899).
As discussed for colonial species of the Stolidobranchia (Kott 1985), zooids decrease in size as the replicative process evolves and becomes more prolific, and colonies become more highly organised. Most families of Aplousobranchia have relatively few, large, yolky viviparous larvae. These are incubated either in the zooids, or in brood pouches, or free in the test. Exceptions are Ciona and Diazonidae, in which fertilisation is external, and numerous small larvae with poorly organised larval organs are produced. The size of the larva, the evolutionary history of the species. and its degree of colonial organisation are all directly related to one another and inversely related to the numbers of embryos produced and incubated (see Berrill 1935a, 1955; Kott 1974, 1982b, 1985).
The most fundamental plesiomorphic character in the Aplousobranchia is possibly the capacity for replication. As indicated, the process is not the same in all families, and aspects of the various processes are often useful indicators of phylogeny. Thus, although in Clavelinidae, Pycnoclavellidae and Holozoidae a well developed vascular stolon from the posterior end of the abdomen is involved with replication, the process is different in each
ramily. Replisation in Claselinidae is from the terminal ampullas of the vaseular process, in Holozoidac it is by division of the stolon, and in Pyenoslisvellidace the athedomen itsell is divided. In Polycitordate and Diasponidat the process is the same - the abdomen divides to form the replicates. This suggests the iwo lamilios are related. Kott (1982b) has summarised the range of different replicative processes kumb in the Aplousobranchia. Despite diflerences in the process, morphotogical adaptations assuciated with increasingly prolific replication of any type are usuatly convergent, viz. sisc and simplification of the zooids. size and form of the colony. and us degree of organisation and capadaty to brond viviparous embryos.

Other possibly plesiomorphic chardeters. probably not convergent. that could be indicative of eommon ancestry, ars the tarval adiesive organs. The everting cones of the najority of town (Clatvelindac, Holoroidace Polycitoridac, Polycfinidac. Didemnidate) can he traced to the pimitive. simple, non-everting, sessile, conical type found in the small tarvale of atl oviparous ascidians (phlotobranch and stolidohranch tas:a as well ass ("onta and the Disforidate). Howeree. decp tubular invaginations that carry the secreary celts back into the las val trunk, in Pyeneclateldidac. Stgillina mjöbergi and Euhcrdmania (Ebherdmanionae), do not have whious relationships with the other types of adhesive organs (see Gloncy 1477: sec also Anombated Gionasy. adhesive organs).

Characters ansuciated with the progressive crolution of cloacal systems are olten ennvergent and matlly indicative of not more than generis status only rately are familises as dosineuished (wiz. Euherdmanionac from Polyclimnate). Thus, in the Haloogidae. Siegilline (with atrial apernures on siphons opening independertly is disune Ifom Sucosoon and Dispaplia wheh have cloacial casvile and wide atrial apertures apening into them. Differences in the arrangement of rovids in the solony, either in cloacal systems or with intrial saphons opening separately to the sxactios are usually regarded as significan only al spocion level. Thus in some. but not all. Eudistoma zooids ate arranged in circles around rudimentary cloacal cavities; and Pistupha has either circular or radiating double row, systems.

Reduction in gonad size is another consengent tharacter associated with replication, a cultomal habil und viviparity (see Koll 1982b). However. the focation of gonads in the sorid is unly sumetimus convergent. ['olscitoridac have small zooids with gonseds in the sbdrmen (in the gut
loop). Similatly, neitlou Holornidac nor Didemnidse have a posterior abdumen and their gonads are also in the gut loop. in what appoas in represens maintenance of their promitive pusbion father than convergenee with the Polycitoridae However, the presence of genad in a posteriens abdoneen in certain genera of the l wherdmanitnate may be consergent, rather than indicative of a diect relationship winh leolyclinidac ceg
 netic relalmonhip with Sigillma than weth Palyclimdat (with which it cum remty is classified). The Liuherdmanionale will be disclassed in Prari ? (1) this woik

Hoboroidat and Didemnidat both produce relatively few and lange ceges. timhryos alc hrouded in thoracie ponches in most species of Jlow Holosoidar and in Atmolum Kott. 1983 1Didem. nidued. A kw speciex of Hoblowidas liaes particularly large egge which rupture diteclly from the abdumien ter develop in the test as they do in most Didemnidate these appear convergent charactus assuciated with the relative size of egys and 7 notids. lior a duect phylogenctic relatomshap between Holozoidae and Didemnodite is demed by their processex ol replication the division ot a posterior abdominal vegetative solon in Holomodate and ucsoplasgeal budding and division of the zosid in Didemmetas

Unlike Flilebobanchia and Soladahranchus, where phylogenthic relationshipe can be identified with a degrec of confidenec, relationshipe betweren many recognised lamules ol Aplousubrathehia are obscule. Their morphology is diverse, presumathly as : restal ol wade iddiation. Subsequent extiostions have leff gape in the extant launs ansl as shorlage of evidence from which io dednee phylogeny: Finther, several munnlypic tana have comarkably wide geographic ranges, hur tre known lrom unly tablated recurd and locnlitics (1iz. Psewdodinzona. Stomoroidist n.l'am.. Nepho theis and fidelavella n.ecn). sugessing that conditions favouring radiatoon in these gloups are not aty Cavourable now as the were is the gast. and that the prexent populations are relice obes.

The Aploumbrathchia is not well represened in the abysad hand of any wean. Possibly ats chatacters are not coadily adapted on condmoms in ocean depths. One celevant chasacter may be the large, vivparous lamac (assoctaled with a colonial habit) that are liee for only sery shore periods. and anc unlikely to be efficient swimmers. These inhibit gene llow belween populations subated by distatnce at ouber leterors the mermal fertilisation that is twe besaraly associated wirla is
viviparous habit may alan represent a selectuve distaduantage at great depths where conditurs on the seal loor apparently aceommodate only sparse populations. These reproductive strategies may refleel selective pressures that have affected evolution of aplousohranch ascidians and paterns of distribution of extant forms.

Onls lew of lle knowngenera of Aplousobranchia are not known from Nustralian walcts.

1. Lutconal longitudinal branchied setsels or forked pipillae present
.2
Intermal longitudinal hranchial wessels and forked papillae absent
2. Giul loms a horizontal loop . .. CIONIDAE Gut lorms it vertical loor. . . .1)IAZONIIDAE:
3. Branchial apertures with smuoth borders. . 4 Branchial apertures with lohed borders.... 5
4. (Mary comains <10 ova: larval adhesive organs inverted tuher. . . PYCNOCLAVELII.IDAE new family
Ovary contailla: $: 10$ oval darval adhesive organs mol inserted whes. CLAVELINIDAE
5. Gomads and heart in a posterior abdomen.............POLYCLINIDAI.
Giunads sud heait net in is posterion ahdomen. .
6 lobes of speruures with secondiary serris(is)ns.......STOMOZOIDAE new family latoes ol anertares withumt sceondary strriltions . 7
7 Replicaten generalded from vegutave solon in stalk or in bose of colony: embryos usually brooded on thoracic pouch; shasarious. spicules never presen HOLOZOIDAE Replicates not generated Irom vegetative stalon instalk or in base of colony; embryos seldom hroogled in lloracic peuth; calcareous spicules sometimes present 8
N. Coloacal systems seldom prescnt*: atrial apertures always 6 -lohed; replication by horizuntal division of the abdamen............. POI. M(IIORIDAE Cloncal systems always present, atral apertures seldom (b-lobed: replication by oesophageal budding DIDEMNIDAE:

* I lus new genus Exorifoma is the only taxon ol the Polycitoridat with it true cloacal system.

Family (IONIDAF: b ahille, 1887

(ionta, the only known genus of this lamily, is characierised by its solitary hahn, horisonial gut Ioup posturiter to the thorsax, persistent openings of the enicardial sacs into the pharyms. Whed
apertures, and large hranchial sac with numerous rows ol stigmata and internal longitudimal vensels stupported on papilde which project jntes the Jumen. What are thought to be light sensitive acelli are presen between the lobes of the ancolutes.

Koll (1969) lirst drew attention to the aplonsobrancls nature of the Cionidac. Which formerly had heen included (with the Diaronidae) in the Phichobrantha on the basis of the internal longitudinal banchial veasels and their supporting papillue which are smalar to those of certain phlebobranch uscidians (see Huus 1937 Van Nami 1945, Berrill 1950). A tendency to lose internal longirudinal hranchial vessels is a cunvergent adaptation associated with the development of vegetative replicalion and consequent reduction in zooidsize in hoth phalehobranch and sloldobranch as well as in aplousobransh ascidians (Kott 1985). Consequently, the absence of these vessels from the small branchial wass of colonial aplousobranchs is a secondary adaptation, and not a plesiomorphic tharacter indicating a phylogenelic affinity at the subordinal level.

As well as its large branchial sac and intenal longotudinal branchial vessels, Ciona has other spparently frimitive characters that persist in solitary l'hebohranchia and Stoldobranchia 1/2. small larvac and an oviparous habit. In all sub-orders, consergent adaptations associated with vegctatuve replication and a colonat hatit include viviparity and the development of large, well ergamised larvae with well developed larval and adult organs (see Kott 1985). 1'hus, small, lategely untlifferentiated cionid-type larvac, with siniple riradially arranged adhesive organs, do not indicate a cluse plylugenetic relationship between Cioma and solitary phlebobranch aseidians. They are associated with a solitary. oviparous habit and their loss represents another adaptation associated with the colonial habit that resules from vegctative replazation.

The hypothesis of a eloser relationship between Coma and Aplousobranchia is mare compellimg Hian one hetween Ciona and lhehohrancha. It is based on the existence and regonerative role of the cpicardial sacs in Ciona and in aplouserbranch lamilies. Individuals of Ciona intestinalis have tis capacity to regenerate lost organs, the regenerative thwuc heing endodermal epicardinm. Epicardial cpithclium is the regencrative tissue in the proecss of replication in most aplousobranch iscidians (Hirschler 1914, Berrill 1935h). Although fegeneration and repair oceur in Ciona, spontaneous division of the zooid resulting in replication docs not. The regenerative sapacity of the cpicardiul tissue in Choma involving selection of
epicardial tissue for a regenerative function, rather than the excretory fole it has assumed in Phlebobranchia, probably represents an early stage in the evolution of the aplousobratich vegetative process, and the separation of Aplousobranchia from Phlebobranchia.

The close relationship between Ciona and other aplousobranch ascidians is supported by the oxidation state of the vanadium present in the blood cells, vanadium (IV) in aplousobranch and vanadium (111) in phlebobranch families (Hawkins, Kott, Parry and Swinehart 1983).

Test vessels of Ciona arise from the posterior end of the body and extend out into the posterior test extensions (villi). Although these vessels are primarily ectodermal, as in all ascidian species, they have a mesenchymal septum beiween the two channels (see Millar 1953a), as in the aplousobranch family Clavelinidae and provide a further indication of affinity with Aplousobranchia,

Araneum Monniot and Monniot. 1973, assigned by its authors to the family Cionidae has no apparent cionid characters. It appears a highly adapted, ahyssal phlebobranch related to the Ascidiidae.

Genus Ciona Linnaeus, 1767

Type species: Axcidia intessinalis Linnacus, 1767
A very soft test in combination with strong. external longitudinal muscle bands that extend the whole length of the organism, make Ciona particularly contractile. There is also an inner layer of finc circular muscles. The branchial aperture is usually 8 -lohed and the atrial aperture 6-lobed. both with single, probably light sensitive, ocelli (see Millar 1953a) between the lobes.

Hoshino and Nishikawa (1985) have exhaustively reviewed Ciona. They have examined many of the available specimens that have formerly been described, as well as additional material from Arctic, boreal and cold and warm temperate European waters, the Mediterranean, the Allantic coast of North and South America, the coast of California and Japanese waters as well as some specimens from Western Australia. Port Jackson and New Zealand. They conclude there are two closely related species of the genus - one, Ciona intestinalis (Linnaeus), with a wide cosmopolitan range, as indicated below, and one. Ciona sajighyl Herdman, recorded principally from Japan, but also recorded from Alaski (as C. intestinalis: Ritter, 1913) and Hong Kong (C. intestinalis: Kout and Goodbody, 1982, part). A further record from Argentina (Pisano, Rengel and Bustuoabad 1971). assigned to C. vapignyi on biological grounds, is
difficult to inferpret in view of the otherwise limited range of the species from Japan to the northern Pacific. Ciona intestitules is the only species recorded from Australia.

Two further species are possibly valid. $/ / 2$, the southern polat C. antarcitica Harlmeyer. 1911 (sec Monniot and Monniot 1983) which has a distinctive flattened, leaf-like ovary (see Hoshino and Nishikaws 1985), and the north-esstem Atantic abyssal C. imperfecta Monniot and Monnint. 1977. Two possibly valid subspecics, C. intestinalis longissima Hartmeyer. 1899 and C. intestinalis gelatinosa Bonnevie, 1896, both with a posterior abdominal vascular extension, have been described from Aretic waters (see Hoshino and Nishikawa (985)

Ciona intestinalis (Linnatus, 1767)
(Fig. 3, Plate 1a)
Terhuam socrahile Gumnerus, 1765, p. 99.
Ciona soctabilis: Hartmeyer, 1915s, p.321, 1915b, p. 254
Asevidia inversimalis 1 , innacus. 1767, p. 1087 . Cuvier, 1815 p.32. Colthony, 1838, p.111. Dekay, 1843. p.259. Sars, 1851, p.156; 1859. p.64.
Phollusios imesstomalis: Savigny, 1816, p.107.
Cionaintestinatis:? Fleming, 1822 , 1.512 Kuppler. 1875 , p.207. Hefler 1875, p.117. Schmetr. 1879- p.89 1 raustedt, 1882 p.454. Roule, 1884, p.7. Castle. 1896. pls 1-13. Damas. 1899, p.I Herdman, 1899, p. 9 Hartmeyer, 1903, p.297; 1915a, p.321: 1920, p.210, 1924. ir 1ypica p. 90 . I. tenella p. 103 . f ocellata p. 104. Alder and Hancock, 1907. p.37. Kesteven. 1909. I. sydnciensis p.282, Van Name. 1912. f. tenella p.606; 1945. f. tenclla p.163?? Huntsman. 1912a, p. 108. 1912b, ph.112, 114, 119, Sumner, Osburn and Cole, 1913, p.730, Pratt, 1916, p.667, Ritter and Fonsyth, 1917, p. 457. Hartmeyer and Michaelsen, 1928, p.259. Aroback, 1934, var, tenclla p.17. Brewin, 1950, p. 347, Millar. 1953u, p.1; 1963a, p. 720; 1970, f, costata p. 1/4, Kott, 1952. p.319; 1976, p.54. Kott and Goodbody. 1982, p. 505 (part. QM G12780). Hoshing and Nishikawn, $1985, ~ p .63$.
Ascidia canima Mucller. 1776, p. 225.
(iona cantha: Kuppler. 1875, p.206. Traustedt. 1880), p. 432.

Asondia ocellara Agassiz, 1850, p. 15y. Binney, i870, p.24. Datl. 1870, p.255.
Cirema occllata: Verrill, 1880 p,251. Me0onafd, 1889. p.858. Hartmeyer, 1903, p.301.

Ascidra tenella Stimpson. 1852: p.228; 1854, p.20: 1860. p.2. Binney, 1870, p.24.? Dall, 1870, p. 255.

Ciona tencla: Verril., 1871, p.99; 1872ia, p.6; 1872b. p.214: 1873. vol. 6 pp. $435,440,1874$, vol. 7 pp. 413 . 504: 1880, p.25, Verrill and Smith. 1873, p.698 Kingsley, 1901. p, 183. Whiteaves, 1901. p. 267. Hantmeyer, 1903, p. 301.
Ascidia pulchedla Alder. 1N63, p.157,
Simon indea Sluiler, 1904, 0,24 (por), qpecimen from Station 312)

Ciona pulchalla: Alder and Hancock. 1907, p. 14. Harmeyer. 1915a, p, 321.
Cinnt fastruluris Hancuck. 1870, p.364. Kuppler. 1875. p.207. Alder and Hancock. 1907. p.15. Hartmeyer. 1915a. p.321.
Chond dianhansea Kesteven. 1909, pp.282. 285.
Clome robuser Hoshino and Tokioka. 1967. a. 275.
Ciond delatimosa: Monnot, C., 1969b, p. 1133
Dtsikimition
Nrw Rrcoans: Western Australis (Albany townjetey. WAM 74483). South Australia(Adelaide outet larbour. SAM E1978 9). Victoria (Portland Harbour. QM (iH134: Port Melbourne, QM G10048)

Previon sa R1 Roblato: Western Australia (Canning River, Swan River Hartmever and Michaelsen 1928; Fremante, Abhany Hatmeyerand Michaelsen LU28, Kot 1952). South Australia (Port Adelade - Kott 1952). Tasmania (Hobat Kot 1952). Victoria (Pum Phillip Bay Kott 1976). New South Wales (Port Jatkwn - Herdman 1899, Kon 1452). Queensland (Rackluapton Kot 1952). Indonesia (ZMA TU333 specimen from Sl. 312 Slwiter (904).

Re-examination bl Hong Kong material in the Quensland Museum (see kolt and (imodbody 1982) shous the species on we hult of the Fisheries Vessel (M62) to be C. intestinalis (QM(312780). All other specimen lots, both from inside Tolo Harbour and in the South China beit, are Co savighys.

Cinnu imentinalis is known also from the Arctic, the cast Atlantic part of the boteal tegion, around the British coasts. the western seahoard of Furape, the Mediterrancan, parts of north and south America. Cape Verde, and Vew Zealand (Brewin 1950, Millar 1953a). Van Diame (1945 p. 162) summanises the American records帾 ' From Grecnland and Davis Strait south to southern Mastachusetes and Rhode Island and on the Pacilic coast from southern Alaska to the southern end of California:

However, the only coofirmed records on the Pacific coast of north America (see Hoshino and Nishikawa 1985) are from California. As (C. savgryi has a known range that ineludes the Pacilic coants of Alaskal and Canada, it is possible that records of Dill (1870) and Hhmtsman (1812a, b) are of C. salighyi rather than C. imestinalis

The Australian records ate all from harbours and port installations, and several (Hartmeyer and Michacdsen 1928) are from brackish locations well up river estoraties. However, the most recent records are nol less than 10 years old. The species appears to be disappearing from Australian harhuurs, where, from 195010 1960, crowded poppulations were known to occur. Van Name (1945) observed the same phenomenon on the northern coast of New Fngland where Ciona disappeared almost complately lrom a region where it had been common in the mid-19th century. The species is 肘rishing in Hong Kong and is espectally common in the same

Fise 3. Cona mextinutis (QN GH34): a. terminat ampullac: 1 , individual in test showing gut-loop and muscles. Scales a. 1 mm : b, 5 mm
hahitats (on ships hulls, wharl piles ete) as it used to occupy in Australia (Kott and Goodbody 1982).

It is possible that C. intestinalis is adapted for a habitat on under surfaees sueh as ships hulls - an adaptation that would favour its transport and eosmopolitan distribution on ships - a proposal first made by Van Name (1945). This proposal was repeated hy Kott (1969. 1974). Kott (1974) suggested that populations were confined to ports and harhours because there they could be maintained in suffieient densities for sueeessful sexual reproduction; while in the conditions outside these proteeted loeations larvae would be dispersed and ultimately reach sexual maturity in isolation from other individuals of the speeies.

Description

External. Appearance: Individuals are always found crowded together in large populations. They are cylindrical, up to 15 cm long when extended, and usually hang vertically from under surfaces, fixed by their posterior ends. The siphons are of variable length, the 8-lobed branchial siphon terminal and the 6 -lobed atrial antero-dorsal. The test is soft and translucent. When the animal is contracted it is very wrinkled on the surface, but internally the soft gelatinous mass becomes thicker. Occasionally tubicolous worms and other epibionts are attached sparsely to the outer surface and the outer layer of test is sometimes quite hard and lcathery.

The single, possibly light sensitive, ocellus between the lobes of the apertures each consists of a central red spot surrounded by a patch of orange pigment. Posteriorly the test is produced into short projections (villi), that help to anchor the animal, and that contain the double-channelled test vessels with large (1.5 mm diameter) spherical terminal ampullae.

Intirnal Structure: The most conspicuous feature of the body wall is the long parallel muscle bands, 6 on each side, 4 of which extend from the branchial siphon to the posterior end of the body: and 2 from the atrial siphon to the same point at the posterior end of the body. There also is a pair of fine ventral muscles along each side of the endostyle. Anteriorly the longitudinal muscles extend along the siphons beneath circular siphonal muscles. A layer of circular muscle fibres is present beneath the longitudinal muscles. From 60 to 100 simple branchial tentacles (the number increasing with the size of the individual) encircle the siphon basc. Larger tentacles, ol 3 orders of size, alternate with rudimentary ones. The dorsal tubercle, in a shallow prebranchial area, has a simple U-shaped slit, with the horns turned out. In larger specimens the slit becomes convoluted and complex, with some side branches. A row of pointed, tentacle-like, antero-posteriorly
flattened dorsal languets, each expanding from a transverse vessels where it crosses the dorsal sinus, extends the whole length of the branchial sac, and curves to the right of the conspicuous oesophageal opening at the posterior end.

The endostyle also extends the whole length of the branchial sac and continues posteriorly into a curved and usually (but not always) pointed evagination from the postero-ventral corner of the branchial sac - the endostylar appendix. Two of the newly recorded specimens (QM GH34) have a short endostylar appendix, rounded at its tip. Occasionally, the appendix is turned up to the left of the branchial sac (QM G10048; see Roule 1884, pl. 1 fig.5). The retropharyngeal groove extends across the posterior end of the pharynx from the base of this appendix to the oesophageal opening. The small paired openings to the epicardial sacs are close together in the retropharyngeal groove just dorsal to the base of the endostylar appendix.

The most conspicuous feature of the branchial sac are the internal longitudinal vesscls, bearing spoon-shaped papillae that project into the pharynx at their junctions with the transverse and parastigmatic vessels. There are from 30 to 130 longitudinal vessels per side, increasing in number as the individual grows. Stigmata are long and narrow, and, like the longitudinal vessels, increase in number with the size of the individual, from 4 to 8 per mesh.

The gut loop is behind the pharynx - in an abdomen - although there is no constriction of the body wall separating it from the thorax. The oesophagus, from the postero-dorsal corner of the pharynx, curves postero-ventrally slightly to the right of the midline and opens into an almost spherical stomach that is more or less tapered at each end and lies in the dorsal curve of the posterior end of the body. The stomach has about 40 longitudinal ridges in its inner lining. From the distal end of the stomach, the intestine curves anteriorly and then dorsally to lie across the posteriorend of the body to the left of the stomach. The rectum extends anteriorly, dorsal to the gonoducts, and opens about two-thirds of the distance up the branchial sac in a lobed anal aperture.

The gonads are also in the abdomen, the testis follicles being minute tubules connected by vasa efferentia, and forming a furry-looking coating over the stomach and intestine. The ovary, a simple sac becoming larger and less regular in older individuals, lies to the left of the stomach and just behind the horizontal limb of the intestinc. Male and female ducts extend antcriorly inside
the rectum. Both gonoducts extend anterior to the anus, however. to open at the base of the atrial siphon. The tip of the male duct is swollen into a small bulb that has in the vicinity of 20 separate minute tubular openings on its upper surface. There is usually a cap of red pigment over the terminal bulb that persists in alcohol preservative over many years.

Remarks: Ciona intestinalis has an endostylar appendix with epicardial openings close to it, and the tip of the male gonoduct has a red pigment cap over it. Ciona savignyi lacks an endostylar appendix and has epicardial openings close to the oesophagus. Some C. intestinalis are distinguished further by the cuticular layer of the test acquiring a leathery consistency.

A distorted and mutilated specimen from Indonesia (Flores Sea ZMA TU333 Siboga station 312) assigned to Ciona indica Sluiter, 1904 is a specimen of Ciona intestinalis. The openings of the gonoducts are mutilated anterior to the anus, and their exact form and position could not be determined. However, the endostylar appendix is present in the position usual for C. intestinalis at the distal end of the endostyle; secondary branchial papillae, though small and often compressed, are also present (Sluiter 1904 pl.IV fig 2); and, as Nishikawa has reported (Hoshino and Nishikawa 1985) the muscles, gut, gonads, and epidicardial sacs and their openings are all characteristic of C. intestinalis. The flaceid and mutilated test of this sessile specimen was stuck onto the firm, gelatinous test of portion of a polycitorid colony, but it does not appear that the living specimen was so attached. Specimens of Ciona indica from Siboga station 49 (also from the Flores Sea) have been found to be conspecific with Rhopalaea crassa (see Hoshino and Nishikawa 1985).

Detailed accounts of the morphology and histology of C. intestinalis are given by Roule (1884) and Millar (1953a).

Family DIAZONIDAE Seeliger, 1906

Members of the family display primitive characters shared with the Cionidae, viz. numerous inner longitudinal branchial vessels, a large branchial sac, and a gelatinous, translucent test. It is the only other family of the Aplousobranchia that, like Cionidae, has large numbers of externally fertilized eggs, and larvae with sessile, triradially arranged adhesive organs each consisting of a group of specialized epidermal cells and a cerebral vesicle but little other organisation of trunk organs (Berrill 1950). Also like Cionidae, zooids have 6-
lobed incurrent and excurrent apertures. The gut loop is vertical and posterior to the branchial sac and usually encloses the large gonads - although these are sometimes present in a posterior abdomen. Gonoducts open near the anus, well anterior near the base of the atrial siphon, as is usual for oviparous species (see Kott 1985). Body muscles are longitudinal, extending down the body from both siphons. No oblique muscles extend posteriorly from the endostyle as in Clavelinidae.

The family appears related phylogenetically to Cionidae, being separated from it by the extension of the gut into a vertical rather than horizontal loop, and by the progressive development of vegetative replication through simple strobilation of the abdomen involving the epicardial sac as the regenerative tissue (see Berrill 1935a, 1950 for Diazona). The mesodermal septum that develops in the vascular stolon of Ciona intestinalis is not present in Diazonidae.

Species range from solitary individuals (Rhopalaea) to colonies with completely embedded zooids (Syndiazona, Pseudodiazona). Vegetative replication, although it is not prolific, takes place in most species. In Rhopalaea a number of species are solitary but regeneration of the thorax is apparently a common occurrence. Progressive reduction in zooid size with the evolution of more prolific vegetative replication is well demonstrated in this family - the zooids of solitary Rhopalaea being much larger than those of colonial Diazona spp.

There is some variation in the course of longitudinal muscles. Generally they extend along the thorax and the abdomen. However, in Rhopalaea crassa they are confined to the thorax, and in R. nordgaardi they continue onto a vascular stolon. In both Tylobranchion and Pseudodiazona there is a true posterior abdomen with muscles extending onto it from the abdomen, and with gonads and heart in it that appear spilt over from their primitive position in the gut loop. These changes (possibly related to reduction in zooid size associated with increasing efficiency of vegetative replication as the colonial habit evolves), suggest a relationship with Polyclinidae, in which zooids, with gonads and heart in a posterior abdomen, have internal longitudinal branchial vessels reduced to simple papillae (Ritterella spp., Protopolyclinum and Polyclinum) or lost altogether.

Occasionally (in Tylobranchion) there are forked branchial papillae rather than continuous internal longitudinal vessels. However, the reduction of internal longitudinal vessels to forked papillae appears to be a genetic character
indicating a taxonomic difference rather than an intraspecific variation as C. Monniot (1969a) suggested when he proposed the synonymy of Rhopalaea nordgaardi Hartmeyer, 1922 with Tylobranchion - a proposal earlier rejected by Ärnbäck (1927).

Rhopalaea and Pseudodiazona Millar, 1963a (monotypic) are the only Diazonidac represented in Australia. Others known are Diazona Savigny, 1816 (polytypic), Syndiazona Oka, 1926 (polytypic) from the Philippines, Japan and French Polynesia, and Tylobranchion Herdman, 1886 (monotypic) from the Antarctic (sec Kott 1969). Even genera at present known polytypic are not diverse, Diazona has 3 species - 2 from the western Atlantic (sec Van Name 1945) and the type D. violacea Savigny from Europe. Rhopalaea contains 7 species (see below) and Syndiazona has only 2 species from the western Pacific.

Syndiazona chinensis Tokioka, 1955 is known from the East China Sea (Tokioka 1955a), the Philippines (Millar 1975, and new records QM GH521 GH531), the Kei 1s (Millar 1975), and French Polynesia (> Rhopalaea piru Monniot and Monniot, 1987; see below, Rhopalaea). Millar (1975) thought that Polycitor renziwadai Tokioka 1952 from the Arafura Sea also may be a specimen of this species. However, Tokioka did not observe a posterior abdomen or internal longitudinal vessels, and his specimen has fewer rows of stigmata than are found in S. chinensis. It therefore seems more likely that P. renziwadai is correctly assigned to the genus Polycitor. Nevertheless, despite the present absence of records, it is not unlikely that S. chinensis will be found to occur in Australian tropical waters as it already is known to range widely in the western tropical Pacific.

Key to the Genera or Diazonidae (* not recorded from Australia)

1. Zooids solitary or at most 2 cmbedded in common testRhopalaea
Zooids numerous, never solitary, partially or completely embedded in common test....... 2
2. Zooids partially embedded in common test..Diazona*
Zooids complctely embedded in common test.
3. Muscular extension containing gonads present postcrior to the abdomen
.4
Muscular extension containing gonads not present posterior to the abdomen.
n...............
4. Heart halfway down the posterior abdomen............................. Tylobranchion*

Heart at the posterior end of posterior abdomen.

Pseudodiazona

Genus Rhopalaea Philippi, 1843

Type species: Rhopalaea neapolitana Philippi, 1843

The genus is characterised by its large pharynx, with internal longitudinal branchial vessels and numerous rows of stigmata. The abdomen is separated from the thorax by a narrow oesophageal neck, and is tightly contained in firm ahdominal test. Numerous longitudinal thoracic muscles sometimes extend onto the abdomen.

Five of the 7 known species of the genus Rhopalaea are solitary, viz. R. abdominalis (Sluiter, 1898), R. birkelandi Tokioka, 1971, R. crassa (Herdman, 1880), R. tenuis (Sluiter, 1904) and the type species R. neapolitana. Rhopalaea nordgaardi Hartmeyer, 1922 from Norway and R. hartmeyeri Salfi, 1927 from the Gulf of Naples are the only 2 species found as colonies. Rhopalaea hartmeyeri, recorded only once, generally resembles R. crassa. Rhopalaea nordgaardi $>R$. norvegica Ärnbäck, 1926) is solitary, or up to 2 zooids enclosed in common test. The mechanism of replication is not known. Constriction of the epidermis in the region of the oesophagus (which would involve endodermal tissue from the epicardial sacs) is not impossiblc (Ärnbäck 1927).

No trace of budding has been found in either R. crassa or R. tenuis in the course of the present study. Although fairly closely associated individuals are sometimes found, they are never joined, and seldom in contact with one another. Millar (1975) described enlarged terminal ampullae in the abdominal test, and even a differentiated blastozooid "attached to the abdominal part of the parent' (Millar 1975, p.263). No known mechanism of replication in the Aplousobranchia could account for the presence of such a bud, which could be a juvenile settled on the outside of the test, as in specimens assigned to Rhopalopsis defecta Sluiter, 1904 (ZMA TU968.2< Rhopalaea crassa). Salfi (1928) examined many specimens of R. neapolitana and could find no buds. He concluded (Salfi 1928, p.370)
> individuals of R. neapolitana show phenomena of regression and juvenescence . . . In the regressive phase the zooid is destitute of a branchial sac and connected organs, which will reform by the regenerative process in the phase of rejuvenescence. Following the periods of regression and rejuvenescence an entire modification of the external shape of the individual, and sometimes of the typical shape of the species, occurs.

This conclusion is supported by the present observations on R. tтassa in which vegetative growth appears confined to regeneration of lost parts of the body, especially of the thorax; and to involve modification of the external shape of the individual as it does in R. neapolituna. Thus, in Rhopalaea, vegetative replication appears to be at an early stage of development, involving regeneration of parts of zooids, rather than the replication of whole zooids. It is, therefore, very similar to the situation in Cionu, which has the capacity to regenerate lost parts of the body from endodermal epicardial tissue (Hirschler 1914): Only in R. nordgaardi has the process evolved one stage further toward the aplousobranch pattern - the spontaneous replication of individuals to form a small colony,

Rhopalopsis Herdmian, 1890 was erected for species (R, fusca, R. orassa) closely related to Rhopataea neapolitana Philippi. 1843, but without the minute plications of the branchial sace that had been observed in the type species. This has not been confirmed as a distinction, the minute plications being a variable character, probably dependent on the condition of the specimen. Thus Rhopalopsis is now regarded is a junior synanym of Rhopalaea.

Rhopalaea piris Monniot and Monniot, 1987 from Tahiti is wrongly assigned. The single specimen for which the species was erected is a small, irregular colony. The zooids have a robust posterior ahdominal extension and longitudinal muscles extending onto the abdomen in two strong ventral bands, and from there onto the posterior abdominal extension. Rhopaldea is only racely colonial and then never contains the number of worids found in R.piry. Further. al though muscles continuc onto the abdomen in Rhopalaea lemuis, they do not continue onto a lang posterior abdominal extension, These features together with others reported for R. piru including the conspicuous oviduct filled with eggs, shallow longitudinal striations in the stomach wall, ventral Iongitudinal muscle bands terminating against the mid-ventral line, and embedded zooids with their anterior ends only projecting from the surface ate sall characteristic of Syndiazona chinensis Tokioka, 1955a - of which Rhopalaea piru is a junior synonym.

Only 2 species of Rhopalata have been recorded from Australia, R. crassa with a wide range in the tropical waters of both the eastern and western cousts, and R. temuli, known from many specimens representing a large population in Tortes Strait. Rhopalaea tenuis is readily distinguished from R. crassa by its basal wufts of hair-like roots and the
longitudibal muscles continuing onto the abdomen

Rhopalaea crassa (Herdman, 1880)
(Fig. 4, Plate Ib,c)
Esteinascidia crassa Herdman. 1880. p. 723: 1882, p: 240.

Rhopalaed crassa, Beneden 1887, p, 21, Toktoka, 1453, p. 210. Millar. 1975. p. 262. Kott and Goodbody. 1982, p. 506.
Rhopalopsis crassa. Van Name, 1918, p, 126.
Eccemascidia fusca IIurdman. 1880. p. 732: 1882. p. 241.
Rhopalopsis fusoa; Beneden, 1887, p. 21. Sluiter. 1904. ค. 13.
Ciona indica Sluiter-1904. p. 3 (part. specimen from Station 49 fodo Hoshino and Nishikawa 1985).
Ecleinascidia (? Rhopulopsis) sulidu Herdman, 1906, p. 299.

Rhopalaea sagamiana Oka. 1927b. p. 681.
Rhopalava macrothorax Tokioki, 1953, p. 212.
? Rhopalopste defecta Sluiter, 1904, p. 14
Distriblion
Nrw Recoriss Western Australia (Houtman's Abrolhos, QM Gll933, WAM 97.78. Cockburn Sd. QM (i9670). Queensland (Muoloolabah, QM G10143 5 Gll912 Glf915: Wistari Reef, QM G10046 GH4105 6; Heron 1.. QM G9489 G9955-6 G10036 G10089 G10150 G10159 G11899 GH810 GH958 GH2435 GH3463 GH3781; Swain Rects, QM GH2436 GH2807: Saumarez Reef, QM GF12811: 1izard I., QM GH4078. Philippines (QM GH393 GiH408 GH421 GH454 GH477 GH484 GH494 GH515 GH557).

Priviotsis Recoronro: Indonesia (Herdman 1880); ZMA TU968.2 TLI258 Rhopalopsis defectu Sluiter 1904. Millar 1975). Philippines (Van Name 1918, Millar 1975). Sri I anka (BM 1907.8 30.3 E: sclida Herdman. 1906). Japan (Oka 1927b. Tokioka 1953, Millar 1975). Hong Kong (QM G12789 G12808 Kott and Gnodbody 1982).

The species is common in cotal reef habitats. It is especially common at Heron I frem 2 bi 20 m depth.
Descrietion
Extirnal Amparance Individuals are elongate up to 6 cm long. The thoracic portion of the body is often 2 cm in diameter, but the abdominal portion is usually narrower. The thoracic test may be delicate and almost completely transparent or firm and translucent to opaque. Surface irregularities (that are not present in individuals with thin transparent thoracic test) increase as the thickness and opacity of the test increases. Variations in condition of the test may be associated with age. The test is always opaque and rough over the abdomen. Posteriorly, the abdominal lest is expanded and or extended into solid outgrowt hs that help to wedge the individual firmly into crevices and spaces in coral rubble. No more than a single zooid is embedded in the test.

Fke 4. Rhopataea erasa: a, young individual (QM G10159): b. aged individual (QM Gl1912), e-f thoracts showing inusculature (QM G 10144 Ci9921 G10159 Gioll respectively): g. gut loop (QM Gl0144). Scales. $\mathrm{a}-\mathrm{g} .5 \mathrm{~mm}$.

Aperturek in specmens with delicate thoracic test are conspicuous when extended. They have of prominemt lohes and pigment gatches between them. Those with solid. gelatinous thoracie test have apertures depressed intes the thice test aftd so concealed by it. The branchial aperture is letminal. and thic atrial aportare anteru-dorsal. both directed upwords.

Kott and Goodbody (1082) disenssed individual colour varmathors. 'The conapichobs yblow in the thick thoracie test of apparently older individnals probably indicates the presenec of blood eells containng vanathum with an organic ligand that oxidises to olive green when specimens are removed lrom the substrate (T) Parry pross. (romm.). Ahsence of conspicuous colsur in both living und lixed specimens with delicase iransparent thoracic test is probably a result of the relalively small amount of bloud presem in the thin test.

Internse SIRICHERE: The chorax is always deticaste and the siphons are short, with evenly plaeed circular muscle bands. The thoracje muxculature is primarily longtudinal. Muscls hands Irom the hranchial and atrial siphons hreak: up into at very fine network of fibres at the hase of the siphons and join again into 1010.36 bands extending town the thorax. I loey divide mes branches again across the endosivie. the retropharyngeal gronve and actoxs the ponterion and dorsal borders of the thorax. One musele band always originates foom the intersiphonal region and duvdes into ventral and dorsal branche loward the posterior end of the thorax. Terminal branches extend across the endostyle and icruss the retropharyngeal groove respectively. Muscles are nol present on the abdumen.

In one specimen the anterios portion anly of whe thorgx is strongly contracted and the longitudinal museles appear severed, leaving the Iermanal branches (where they cross the burders of the body) in position. but leaving only traces oll muxculature over most ul the hody wall. In this specimen the internal longitudinal vessels of the posterior cond of the branclital sat also are consistently interrupted. The condition of this specimen is comsistent with asate contraction of muscles. Its appearance conforms evectly with Tukioka: (1953) description of Rhopalace marrothorax.

There are from 2 to 6 stigmata per mesh, 50 10 l 100 rows of stigmata, and from 40 (1) 50 fíme insernal longitudinal vessels supported on conical pitpillate. Irreghlarties onecur in the branchial sate In at least two specintens a part of seteral rows ol stigmata curve to lie longludinally and some
anperforated memhrane and isugulan uterstitial meshes are present in their vimity. In sume specimens from Mudjimba (QM Glol44) the internal longitudinal vessels are interrupted between the papiltae and the stignmata are small and owat, These thoraces may he tegenerating.

The abdomen is tightly enclosed in atmost solid test and is only removed with difficulty. The ocsoplogus is usually fairly long, and expands intes a rather rectangular stomach haif way down the abdomen. It is smooth externally. but internally the lining is broken up into about 30 distince litac longitudinal ridges that become irregular only on the dorsal part of the right side of the stomact. The reetun extends anteriorly io open in the anteron thrd of tac pernbranchial bavity. line anal border is broken into ahoue \& rounded lobess Minate matce follocks chaster around the latge ovary in the gat loop. posteriur to the stomisch. sometimes the abdomen is especially smalt and may be regencrating. A short vessel extend. from the end of the abdomen. It branches in the test. and the terminal ampullac are present in the rootlike projectoons af the lest.

Remitrks: The diffetent appearance of specimens with delicate thoratic test and those in which Hhe Whracic test is opaqut and irregular. like that covering the abdomen, is pronounced. It is probable that, lullowing loss of the thorax, the test doses and the new thorax regenerates whin it. This would caplain the extreme irregutarity. expectally in the urientation of the thorax 1 these opaque. and prosumably oider specimens. it is a phenomenom also observed by siallit (1928 p. 370) for R. Meapahfarro in which there is an entire modilitantion of the external shape" (see Rhopralura ahovel.

Paratypes of Fihopulopses defecfa Sluiter. 1904 (6MA IUY6R. 2 Station 310. IU1258 Station 240) are rut separahle Irom the present spectex. The specimens lrom Sibogo Station 240 inchaded a group of 3 one attached along the abdominal stalk and another near the hase al the third individual. appearing as a colony. The thoraces of a number of these specimens are relatively small, upparenily regenerating whin firm test continuous with and oll the satme firm corsistency as the ahdominal test.

In Australian populations irregular, upaque vellow individuals as well as those with transparent Htorates have been taken from Mooloolabah and Homtmans Ahrolhos, is they were lrom Hong Kong (Kott and Goodbody 1982). However. specimens with delicate transparent ests are most oftern takers from coral rect locations anly ons. opaqueycllou specimen is recorded from Heron
I. (QM GH3463). Perhaps predation oceurring in coral reef habitats prevents individuals surviving until the thoracic test becomes thick and opaque. The thorax is missing entirely lrom a specimen (QM GH2436) from the Swain Reefs.

In addition to yellow, probably associated with intraeellular vanadium, both blue and pinh individuals have been recorded. One pale blue specimen was taken from the eastern end of Heron 1., while populations of this species in the Philippines and Indonesia are a brilliant sapphire blue, as recorded for Rhopalopsis fusca Sluiter, 1904. This colour probably results lirom concentrations of tetrapyrols similar to those causing blue in Sigillina cyanea (pers. comm. D. Parry). A similar colour is present also in R. neapolitana and R. birkelandi. lts phylogenetic significance is not understood.

Neither morphology nor colour - both showing considerable variation and overlap - can readily scparate most of the known species. Some differences exist in the avcrage number of longitudinal muscles, or number of rows of stigmata, or the size of the abdomen, but they usually do not fall outside the range recorded lor R. crassa. Rhopalaea abdominalis (Sluiter. 1898) From the western Atlantic (sec also Van Name 1945. Monniot 1970) is pink to violet-pink in preservative and has fewer rows of branchial stigmata (40) and generally lewer stigmata per mesh (2) than R. crassa. Rhopalaea birkelandi Tokioka, 1971 Irom the Pacific coast of South America is decp blue in preservative and has a small abdomen. Specimens of R. neapolitana Philippi, 1843, from the Mediterranean (BM 98.5.7.303, AM G4271) and the Adriatic (BM 98.5.7.308) are also blue in preservative and have a relatively large number of longitudinal museles (about 36). Rhopalaea hartmeyeri elosely resembles R. neapolifana, but is distinguished by its colonial habit.

Rhopalaea tenuis (Sluiter, 1904)
(Fig. 5)
Rhopalopsiv remis Sluter, 1904, p. 15.
Dusumbitien
Ntw Recoris: Queensland (Torres Strait, QM G11466974)
Praviolsiy Ricombor Indonesia (Jaya Sca Sturer 1904).

The 5 Siboga specimens were taken at 82 m . The new records represent numerous specimens taken by dredec between $9^{\circ} 39^{\circ}$ and $10^{\circ} 03^{\circ} \mathrm{S}$ and $142^{\circ} 39^{\circ}$ to $142^{\circ} 51^{\prime} \mathrm{E}$ at 111018 ml .

[^0]

Hu. 5, Rhopalace remus (OM GH4669): a, whole individual; b. abdomen showing gul loop, ovary, and muscles from dorsal surface; c. posterior end of abdomen showing muscles from left side. Scales: a, e. 5 mm , h, 2 mm .
taty, figer-like, uptoght and up to fecm long. The thorack leas (upper hall to methird) is delicates and in newly recorded specimens the thotax is rather mutilated and drawn nut, Inoking rather like a ragged picec of string. The posterion half to Iwn thirds ol the test is lirm and translucent, with some circular. horizontal wrinkles on the surface. The pinkish abdomen in seen cmbedded in the upper hall of this stalk-like part of the test and blond vessels extend through the lower half Basally the test is ploduced into a mass of short. hranched root-like stotuctures to which sand adheres, somelimes larming it rounded, sundy hold-fast at the posterior end of the body.

The apertures are on short siphons close together. on the anterion liece end of the body. The delicate test al the thorax is prontuced into is rounded lobes around each aperture. The branchial siphon sumetimes is turned ventrally, alithough the thoracic test of the present specimens is usually 100 mutilated and crushed to determinc. the actual orientation ol the apertures.

In these preserved specimens there is sometimes. at truce of reddish piginent in the test, and there areycllow lines along each siphon alternating with Hue Iobes around each aperture.
 a relatively large and diaphanaus thorax and a slightly longer abdomen. The club-shaped andumen bas a narrow ocwophageal neck whoch sis itheut the wame length as the swollen. colunded posterion end of the abdomen which contains the stomath and gonads.

The narrow thornx tapers posteriorly. It has about 20 line longitudinal muscles, aboust half from the branchail siphon ind half from the atrial siphon. These continue as a band along each side of the abdomen abrupily converging posteroorly before terminating in that dise one each side of the mid-dorsal line just anterior to the urigin of the test vessel. Notrunsverse museles were seen

At the base of the branchial siphon are about 24 fine pointed tentacles, the barest ones alternating with the smaller ones. The flask-shaped neuat gland hats a short, wisle duct will at sumple circular opening.

About 12 incernal langinudinal vessels on cach sade of the branchial sue extend the length of the sac and are supported by papillae. There are no secondary papillate. lithere are ahond fol rows of sligmata ind nbout 4 sligmata per mesh.

A simple, vertical gut luop is finmly embedded in the test with the relatively small, oval stomach (sometimes streched vertically) about half-way down the descending limb. The stomach has a suture line but folds were not deteeted. I'ie anus
opens aboul twa thards of the way up the hramehial sac. A lone tubulur ovary and numerous mals follicles are crouded into the gut loup.

The posterior abdominal test vessel branches in the stalk and the terminal branches exterat into the hasal root-like projections.

Rrmakks. Gencrally these present pooids confurm with the deseription given by slater (1904).

Sluiter thought individuals possibly were joined together by a basal stolon. Huwever. enough individuals exist in the present collection in establish this dues not happen: the species is a solitary ane. All Rhonalaca have the same narrow waist and their abdomina firmly bedded in wolid basat test, however. the branches of the pasterior ahdominal vessel. and the basal roots of the present species are distinctive. Muscle bands oceur arm the ahdomen in Rhopalaea nordgaardi (sce Arnbäck 1927). but $110 t$ in R. cravsu o1 R. neapofitume. Rhopshaco remuis is further distimguished by its very much narrower thorax, and fewer thoracic musile bands and stigmata.

Abdominal muscles. with their circular terminal disc, appestr similar to those of the colonial Simliozonu chinenvis Tokinka 1955a from the Kei In, the lhilippones and the Fint China Sea (sce Millar 1975).

Giemus Peududiazona Millar. 1963

Iype species: Pseudotiuzana sahulusa Mallar. 1963a (= Promophldimm cheviforme Kott, 1963).

This rarcly concountered diazonid genus is characterised by the presence of it long pusterior abdomen containing epicardium, gonads und, at the posterior end. the heart. It has the dianonid characters of internal longatudinal hramebial. vessels, 6 branchial and 6 atrial lobes. and the anas opening anterurly st the base al the atiterodorsal atrial aperture. Stomach is smouth. and. powibly is an antilact of its preservation. it sometimes is compressed into il quadrilateral shape in section. L.ongitudinal musele bands extend the length of the zooid, from the splanes (1) the end of the posterion abdomen. Zooids are completely embedded in common text

A posterior abdomen (present in this genus and in Tidohranchiom) suggents an allinity with the Polyclinidae. Koll (1963) accordingly included il in Protopolvalunum Millar. 1960 (EUherdmanii. nat) hy expandeng Millar's delimuinn wf Prum. polyslimum to include specics with complete internal longitudinal branchial vessels as well as those which lacl only remnants of those vessels
in the form of papillae on the transversc vessels (as in the type species P. pedunculatum Millar. 1960 from New Zealand). Later in the same year Millar (1963a) described Pseudodiazona sabulosa. in the family Diazonidae on the basis of its complete internal longitudinal vessels, and close relationship to the Antarctic Tylobranchion which also has a posterior abdomen.

Millar did not comment on the similarity of his species to Protopolyclinum claviforme Kott, with which it is here considered to be conspecific.

Pseudodiazona has affinities with Euherdmaniinae through Protopolyclinum pedunculatum. The latter species resembles Pseudodiazona claviformis in the shape of its body, and the course of the muscles. Further, although Protopolyclimum pedunculanm lacks the internal longitudinal branchial vessels of Pseudodiazona claviformis, their rudiments are present as branchial papillae.

Patridium Kott, 1975 originally assigned to Euherdmaniinae, characterised by its internal longitudinal vessels and folded stomach, is a junior synonym of Pseudodiazona, the stomach lolds being artefacts,

In addition to the type species, one other. Pseudodiazona abyssa Monniot and Monniot. 1974 from the eastern Atlantic, has been described.

Pseudodiazona claviformis (Kott, 1963)
(Fig. 6. Plate 1d)
Protopolyclinum claviforme Kott, 1963, 5. 72. Pseludodiazona sabulosa Millar, 1963a, p. 718. Patridium pulvinatum Kolt, 1975, p. 4.

Distribution
Nfw Records. South Australia (Seacliff Reef, QM GH2307). Victoria (Off Cape Howe. ZMC 30.9.14). New South Wales (Jervis Bay, QM G10100; Botany Bay, AM Y'2149).
Previousily Rfcoridm. South Australia (Northern Great Australian Bight SAM El035 holotype Patridium pulvinatum Kolt, 1975). Victoria (Port Phillip Bay BM 85.11.20.34-43 Millar 1963a: Eden Kott 1963).

The species has been taken on rocky substrates at depths of 10 to 100 m .
Dt:SCRIDTION
External Appearance: One colony (SAM E1035 holotype Patridium pulvinatum) is a large (6 cm long) gelatinous, egg-shaped, sessile cushion with some sand on its base. Other colonies are top-, fan- or club-shaped, sometimes with a lirm sandy stalk or basal part, and a soft, glassy transparent head wider than the stalk and either rounded or flattened across its upper surface. Sometimes the transparent head of the colony is subdivided into a number of separate lohes of
different diameter, and sometimes the whole colony is subdivided, the parts joined at the base of the stalk. Stalked heads are up to 3 cm in diameter. Zooids are seen clearly through the glassy test of the top of the colony. Branchial and atrial siphons open separately to the surface by 6-lobed apertures.

Internal Structhre. Zooids are 1 to 4 cm long. 'lhey are divided into thorax, abdomen and posterior abdomen, the latter being up to twothirds of the total length. Relatively short vascular appendages (2 or 3) extend out into the test from the postcrior end of the posterior abdomen which often is thread-like, but sometimes is drawn up into a broad sac. The branchial aperture is in the centre of the anterior end of the zooid, while the atrial aperture is antero-dorsal. A circular area of the antcrior prehranchial body wall surrounding the apertures is white and opaque in preservative and is highly contractile.

The body wall is delicate and quite transparent. Body muscles are longitudinal, about 10 thoracic hands extending posteriorly along each side of the ahdomen and posterior abdomen hut not onto the vascular appendages. Longitudinal muscle bands branch and bundles of fibres join adjacent bands, to form a wide open and irregular network on each side of the thorax. Commissures between longitudinal muscles alter spacing of the longitudinal bands. In some contracted zooids the bands are evenly spaced, extending more or less parallel to onc another. In others, muscle bands curve in an arc from the anterior end, posteriorly along the ventral horder of the thorax and then dorsally, where they are crowded together before extending onto the abdomen, In this latter condition, the dorsal border where the muscles are crowded together is strongly contracted and more or less concave while the ventral border is not and extends out in a wide convex arc.

The branchial sac has from 17 to 22 rows of stigmata, with up to 20 per row. About 20 internal longitudinal branchial vessels are supported.on short papillae which do not project above the internal longitudinal vessels. The narrow oesophagus opens into a long stomach about halfway down the abdomen. The stomach is smooth extcrnally, but internally its glandular cpithelium has longitudinal and irregular interruptions. There is a duodenal area distal to the stomach and a conspicuous oval posterior stomach in the descending limh of the gut. The rectum extends anteriorly to the base of the atrial siphon.

Gonads consist of numerous male follicles and a relatively large ovary. A large number of eggs are sometimes arranged in a single series in the

 d. whole cooid. with gonads (ZMC): e. whole food without gonads ($\mathrm{S} A \mathrm{M}$ F1035) ; f.g. stomath, and posterior cond of the gut loop ($5 A M 11035$). Scates: a,b, 5 mm ; c, e-g. 0.5 mm : d .1 mm .
oviduct. In the relased posierior abdomen malle follictes are arranged serially. However. when contracted, they are buncled anteriorl (ZMC 30.9.14).

Remakrs Generally, examination of the newly recorded specimens confirms the caslier descriptions. Althnugh Millar $11963 a /$ hats not recorded the rather conspicuous branching of thoracit muscles. his specimens lave the same mumbers and arrangements of muscles branchial and atrial siphons, rows of stigmata, inner longitudinal hranchial vessels. the same stomach lining. anteriorly situated anus, and simibar colonies with a glasby tramparent and expanded head through which the embedded rooids can be seen.

The species most closely resembles the Antarctic THahranchion sperimsime (see Kott 1969). differing principally in the position of the heart al the end of the posterior abdumen.

Re-evamination of the halotype ol Putradum puthinatim Kott, 1975, has shown its rooids to be identical with thone of the present species. It has the same hody proportoms. musculature. branchial sac and the same contractile area around the siphons, which, in contratted specimens. flattens dre anterior end of the rooid. Koll 11975) completely misinterpreted the stamach stoveture in these zooids. reporting the stomareh as hasving folds. In fitct, the stomach is the same dit that in other specimens of Perthotisanom. being hasically smooth. but may become folded in some of the preserved roods. The colony al Konts (1975) species is large in comparison with recorded specimens of P. claviformis. However in a specimen lot (G1t2307) From St Vincent Culf a reduction in the length of the stalk oceurs as colons size increases. The solt top al the colony appears 10 overerow the stath a trend that prohably culminates in large sessile colonies such as the one frum the Greas Austalian Bight (SAM [10035).

Millar (1903a) noted the strong similatit. between the present species and /lomomeodsmoma longigume Tohioka. 1454 from Japan. The colonies ate the same with a sand hasal portion and a solt upper "corona' or head. Athough Tokiokat has not described museles on other parts of the body. the arrangement of the shoracic muscles in his speciments is similar to that in the present species. The anal opentng lopposite the Difth row of sligmata: Millar [963a), as in all diazonids is well anterint near the base of the athial siphon, and there are ocelli in the lobes of the afrial siphon (overlooked in the branchatal siphon?). Another point af similarity is the large number ol eges serially arranged in the osiduct - it character ohserved in the two oher specimens
in which gonads are developed (KOn lyo3, and in the newly recorded speeimen from Cupe Howe - 7MC 30.9.14). However. Tuhioh ás Japanesc species. even il it is lound to he a dlaronid speciey. seems more robust than the present apecies from Australia, and has more thoracie muscles. Furhom the two species are separatiod from one anostos by the lropics.

Family CLAVEI.NWDDIE Forbes and Hanley. 184K

The lamily comains solieary and colonial species with rooids ranging from the small (less than lern fong) poids of Clarelina mimuta Tokioka, 196? with orily 4 rums of stigmata. up to large (10 eno diaronid-like rooids ke.g. C. moprotionalis, ('. ostrewritum and bthers with very numerouss branchial stigmata. Although replication atway occurs, some spectes hatse solitary pooids whale others reflece diflerent degreen of organizalion. from sregetar colonies with separate or partally embeded rooids connected by bestal wolons or hatal fest. to completely embedded fuends regulaty artanged in regularly shaped. stalked colones 1 Clardima hawdmonvis. C. psewdohawdinemsis and the genus Nieghthets).

Familial eharacteristios ate smonth horderal aperturch opening separately to the exterions: absence ol internal longinudinal branchaal vessels; wide horimonal mentarames hetween the rows of stigmatad atrad a well deseloped pocteron abdominal vascular stolon with mesenclymal septum. The sasculad stolon bramethes in the hasal test, and the terminal hranches end in ampullac from wheh. undaly following their enlargement and isolation from the vascular stolen i Berrill 10.356 . (950), vegetative zooids develop. In some solitaty spectes clones separate lion one another and from parental rooids following their larmation (c.g. Clutalina miniona Watanabe and lokioka, 1973). In athers the adult room is resorthed and new zooid develop from the isotated terminial ampullae that persist in the stalk. Thus in the former case clones exist conemporamenusly and in the latter catse they esist sequentially. Ouly in the genus Nephotheis is the vascutar apparatus modified in this genus it forms a complicatod network in the statk. The stite of replication is localised at the top. rather than at the hase oll the stath and lee terminal ampullate are not inolated from the networth at any stane of the replicative process.

As in Diaponidae, the lest is Translucent and gelatimous, anat the hady is divided into thoras. and athdomett, the latrer occupied by the vertical
gut loop. Post-mortem colour changes resulting from oxidation of high levels of intracellular vanadium usually result in dark blue zooids.

Body muscles of the Clavelinidae are grouped into longitudinal and oblique bands. The more ventral bands are oblique, extending from the end ostyle (rather than from the branchial siphon) toward the postero-dorsal eorner of the thorax. where they extend along the abdomen. More dorsal bands are usually longitudinal, cxtending from the branchial siphon, the intersiphonal region, and, sometimes from the atrial siphon. onto the abdomen. Sometimes muscle bands from the branchial siphon, the intersiphonal region and the endostyle extend to the dorsal border of the body where they appear to fade out as they turn posteriorly, apparently not extending onto the ahdomen. These are described helow as transverse museles, although their provenance, from the primarily longitudinal and oblique musculature of the Clavelinidae, is clear. In relaxed thoraces, muscle bands subdivide into scparate bundles, exchanging branches with one another. In contracted thoraces these hranches draw the separate bundles together causing an apparent decrease in the number of muscle bands resulting in apparent intraspecific variation in the numbers of musele bands recorded for each species. In the descriptions that follow, the formula developed hy Tokioka and Nishikawa (1976) has been used to describe the musculature of clavelinid species. E refers to muscle hands extending from the endostyle, B to muscle bands from the branchial siphon, D to muscle bands from the intersiphonal space between the branchial and atrial apertures, and A refers to muscle bands from the atrial siphon. In species with largely longitudinal museles, the thorax becomes short and wide with their contraction. Where muscles are primarily oblique, their contraction causes distortion of the thorax, drawing the branchial siphon and endostyle down leaving the atrial siphon at the top of the zooid. Zooids with transyerse museles become long and narrow when contracted.

The length of the abdomen relative to the thorax varies from species to species, although the stomath is usually at its posterior end. The anal aperture is some distance up the branchial sac as in the Diazonidae.

Gonads are present in the posterior end of the gut loop. Eggs are relatively large and numerous (larger than in Diazonidae). The large eggs protrude from the ovarian wall and are rather loosely grouped together amongst the male follieles. The testis consists of numerous pearshaped follicles. surrounding the ovary and
spreading onto the gut wall. In some species fertilisation takes place in the peribranchial cavity where development proceeds. In others, fertilisation is in the distal end of the oviduct, which duly expands and protrudes from the posterior end of the thorax to form a brood pouch in which embryos begin development completing it in the perihranchial cavity before their release as tailed larvae.

Most larvae have a large trunk (0.7 to 1.5 mm long), usually with 3 large, triradially arranged adhesive organs, one dorsal and 2 ventral, at the anterior end of the trunk. The adhesive organs are on short, wide stalks and usually consist of a shallow cup ol' epidermal cells containing a wide but fairly shallow protruding cone of columnar cells. These increase in length toward the centre to form the cone. Occasionally the epidermal eup is absent (Clavelina baudinensis), and in several species the adhesive organs are much modified (see C. dag.tsa). The adhesive organs are supported on a stalked frontal plate. The stalk of the frontal plate is horizontal, extending from the posterior abdominal end of the oozooid. The plate is more or less flattened and stands vertically against the anterior end of the oozooid. Frontal plate and stalk, logether with the developing oozooid, are all in the larval trunk and enclosed by test. An otolith and an ocellus are in the cerebral vesicle. Usually the tail encircles the trunk around the midline. Anteriorly it passes up between the 2 lower adhesive organs and to the right of the upper one. Two, 4, or more, rows of stigmata develop in larvae before their liberation. However the gut loop is only partially differentiated and completes its development after larval release.

Despite the general similarity of clavelinids and diazonids, a tionid-like ancestor is most likely for Clavelinidae, for in Ciona a similar mesodermal septum develops in the posterior abdominal vascular stolon (Millar 1953a) and in some cases the stolon itself is well developed (e.g. in Ciona intestinalis longissima and C. intestinalis gelatinosa: see Van Name 1945). In Diazonidae the posterior vascular stolon never has a mesodermal septum, and an origin from some pre-cionid ancestor, through exploitation of the regenerative capacity of the epieardium for replication is possible; while Clavelinidae exploited the mesodcrmal scptum of Cionidae for the same purpose.

Pycnoclavella Garstang, 1891 and a new monotypic genus Euclavella (type species Colella claviformis Herdman, 1899) are separated from Clavelinidae by their invaginated, tubular, larval adhesive organs. This suggests a different origin, but probably also from a cionid ancestor. These
genera are further distinguished Irom Clavelinidae by their smaller zooids, fertilisation at the base of the oviduct, smaller gonads, and probably a different method of replication - viz. horizontal division of the abdomen (see helow). Stomozoa Kott, 1957b, also previously thought clavelinid, has many characters separating it from this family (see below, Stomozoidae). Archiascidia Julin, 1904, Irom the Mcditerranean, previously thought a monotypic clavelinid, is probably a synonym of Pycnoclavella.

Only 2 genera of the Clavelinidae are recognised in the present work, viz. Clavelina and Neplitheis, separated from one another by the vascular network in the latter. Records of Nephtheis (monotypic) are at present confined to the tropical western Pacific. Clavelina, a relatively diverse genus with a cosmopolitan range is well represcnted in Australian waters. Records of the family from the Antarctic are confined to a single zooid, probably in the genus Clavelina (see Kott 1969, Porloclavella sp.); and affinities ol Australian representatives of the genus are probably with the tropical fauna.

Genus Clavelina Savigny, 1816.

Type species: Ascidia lepadiformis Mueller, 1776.
The genus is here defined as comprising solitary or colonial species of the Clavelinidae in which the zooids are connected by basal stolons, or completely or partially embedded in common test. The thorax is large with not less than 4 rows of stigmata and not less than 20 stigmata per row. Posterior abdominal vascular stolons branch but do not form a network. Replication is from isolated terminal ampullae of the vascular stolon in the basal test. Eggs are fertilised and begin development in the distal part of the oviduct which is enlarged to form a brood pouch at the posterodorsal corner of the thorax or in the anterior part of the abdomen; and they continue their development in the peribranchial cavity.

Savigny (1816) defined this genus as having a stalked body, branchial and atrial openings without lobes, with neither folds nor papillac in the branchial sac, with languets on the dorsal lamina, and with an abdomen containing the gut loop and ovary posterior to the thorax. Milne Edwards (1842) added its capacity to replicate to the generic definition. This generic definition is, in fact, a recitation of family characteristics. Clavelina, as defined, includes a wide range of forms from the solitary zooids of C. Heridionalis to massive colonies,
The type species, Ascidia lepadiformis (Mucller.
1776), has, in addition to other clavelinid characters, separatc zooids arising from common basal test. Podoclavella Herdman, 1890 was subsequently erected to accommodate solitary species such as Clavelina meridionalis; and Stereoclavella Herdman, 1890 accommodated species such as C. australis with separate pooids but with the basal test forming a solid mass or common stalk. Synclavella Caullery, 1900, was erected to accommodate clavelinid species in which the zooids were completely embedded.

Subsequently Van Name (1945) and Berrill (1950) drew attention to the difficulty in separating genera on the basis ol the degree to which their zooids were separated, a view with which the present author is in agreement.

Huus (1937) separated Podoclavella and Clavelina on the basis of the presence of structural ridges on the stomach in the latter genus. However. again, the attempt to subdivide the genus was unsatisfactory and prohahly invalid - Clavelina lepadiformis has a stomach that is rectangular in section but there do not appear to be any structural ridges. Nishikawa and 'Tokioka (1976, p. 63) in a review of some clavelinids in Japanese waters observed, that 'the feature of the stomach secms to differ considerably according to the physiological state of the zooids'. In the present study, the presence of structural ridges in the stomach is variable in Clavelina meridionalis. C. moluccensis. and C. robusta n.sp.

Accordingly there does not appear to be any justification for the subdivision of Clavelitua as originally defined either on the basis of its stomach or the degree to which its zooids are free or embedded. Accordingly Podoclavella, Sterenchavella and Sinclavella as well as Chondrostaches MacDonald, 1858 are regarded as junior synonyms of the genus.

Of the 14 species of Clavelina recorded from Australia, C. australis, C. baudinensis, C. cylindrica, C. dag.sa, C. mirabilis, C. ostrearium, C. pseudohandinensis and C. nigra n.sp. are indigenous Australian species and are all temperate. Clavelina arafurensis, C. fecunda, C. mofuccensis, C. meridionalis, C. robusta n.sp and C. oliva n.sp. are tropical western Pacific species. although C. molucrensis has a range into temperate Australian waters.

The genus is not known from the Antarctic and the affinities of Australian specics are with tropical taxa. Australian indigenous species are temperate. hut they have recognizable phylogenetic affinities with tropical, possibly sister, species - viz. Clavelina australis with C. rohusia; C. crlindrica and C. nigra n.sp. with C. mofluccensis; C. clag.sa
and C. astraariant will C. miva a.ap. Generally. the spectes appear to be prolifice. the large rooids incubating large number of emhryos. When liberalcd, the larval trunk ss lange and boith idut organs and adhenive apparatus are well developed hut the tail does not sugecat a stronge swimming capahslity. I ack old dispersal may explain the high level of speciation esident in Australian temperatte waters.

Kル
Racortitul ResM A'site wla

1. Culonial. the coluny regutar and rope-like; a short narrow celindrical mesk scparates cach rooid from the crmmon test mass. C. culinalrica Colmial or solitary. colonies not regular and rape-like; nu short, narrow. eylindreal nech separates zooids lrom the common rest mass
2. Zooids parbally or exmpletely embedded in common test . . 3
Zooids solitary on united only be thin vascular stolons.
. 4
3. Zooids not almost complelely cmbedded (at leat whole of thorax propecting) 7
Zoroids almos completely embedded (not more than anterior part of thorix projecting)................................. 12
4. Zooids fong, extending to base of stalk: vascular appendages shon:
. . 5
Zowids long it short, never extending to base of stalk; vascular appendages long6
5. Stalk thin and leathers......C. (nirearum Stalk not thin and leathery C. dagersa
6. Transverse muscles present anteriurly: obligue museles posteriorly
.C. merisliomalis
Iransverse muscles not presem anteriorly; museles longitudinal and oblique
C. oliva n.sp.
7. Thoracis muscles atl framberse: nuscles inconspicuous on the abdomen 8
Thoracic muscles not all transverse: muscles, conspicuous on the abtomen9
8. Pigencha patches in a transverse row ol 3 hetween the apertures . . . C. molucemsis
Pigment patches not in a tramverse row of 3 between the upertures. . . . (. Migra n.sp.
9. Oblique muscle bands e wice the number of branchial museics (E -2 2 3) . . (". ferminda
Obligue muscle binds = iwice the number of hranchial muscies ($E=2 B$)10
10. Tharaces only Iree of cummon test........ C. mirahilis Thoraces and at least part of athdomen free
ol common test. 11
11. Thoracic muscles about 10; median pigment patches alternate with apertures
C. mestralis

Thoracie muscles about 20; no miedian pigment patches alternating with apertures. C. rutusta n.sp.
12. Muscle bands all longitudinal
C. Dumelintensis

Muscle hands mat all longitudimal........ 13
13. Colony a regular mushroom-shape . C. psetulobaudinensis
Colony not a regular mushronm-hape
C. arafuensis

In addition to the species already recorded from Australta, the lollowing have been recorded lrom the western Pacific region and may oceur in Australian waters.
Clavelna baerulaca Oka, 1934 from Japan has a Eolony that resembies that al C. Vola, its rooids being separate and narrowing to their points of attachment to the hasal stolons (sec Nishikawa and lokioka 1976). Athough. its musculatire generatly resembles that of C. mu/tocensis, huving nether oblique nor longitudinal muscles, it has a lew anomalnus muscles that cross the thoras from the atrial siphon in the opposite direction to the majority of the muscle hends. Living, the species is is inslucent blue wilh darkes bluc bands around the apertures.
Chavelina crohus Iokiok an and Nishikewa, 1475 from Okinawa and the Philippines (QM GH475) consosis ol pooids partially embedded in common test, with a musele formula $4 \mathrm{~F}, 8 \mathrm{~B}$. 21) (Nishikatwand Tokioka 1976). In life these fooids atre grey with a white band around the base of the branchial siphon. Feeir colour resemtales that of the zooids of C. Wigra nosp. The specien are clearly distinguished by their muscles which, in C. nigra, are all kransverse.
Clavelinu clegams (Oka, 1927a) from Japan (see Tokioka and Nishikawe 1976. and Nishikawa and Tokioka 1976) has pooids of 210.3 cmjoined by common basal test, with muscle formula 4 6E. 4B, 2 41). All muscle bands extend along the ahdomen. The species resembles C. fertuma in its colony and rooid musculature. C. elegans is distinguished by its larger foonds and larvac and by the absence of yellow in the living 200 d s.
 western Indian Ocean and Sourb Alrica. has long (5 cm) zoodd attached to branclung stolons or 10 a common basal stalk. It resembles C. anstralis. but is distmguished from it by a
TABLE 1. Summary of Characiers of thf Species of Clafflina Recorded from Ausiralia

Species	${ }^{1}$ Biogeographic description	${ }^{2}$ Range around Australia	${ }^{3}$ Colony organisation	Colour (living)	Muscles	Prestomach	Larval trunk (length, mm)	Other
C. dagısa	A,te	Rottnest I. Geographe Bay	S	solid blue	$>20 \mathrm{E} 3 \mathrm{~B} \mathrm{3D}$	none	1.3	short vascular stolon
C. ostrearium	A.te	Albany-Nuyts Arch.	"	"	20E 10B 5D	"	1.25	"
C. meridionalis	WP.tr	Port Hacking Dampier Arch.	"	lateral yellow patches	$>20 \mathrm{E} 2 \mathrm{~B} 2 \mathrm{D}$	"	1.1	long vascular stolon
C. oliva n.sp.	WP.tr	Lindeman 1. Dampier Arch.	n	,	10E 5B 2D 4A	"	1.0	"
C. fecunda	WP,tr	Heron I.-Rotnest I.	ES	"	7E 5B 3D	"	0.75	embryos numerous, zooids small
C. robusta n.sp.	WP.tr	Lizard I.-Abrolhos	*	"	8E 3B 3D	"	1.3	--
C. mirabilis	A,te	South Australia	"	?	7 E 8B 1 D	"	?	transverse muscle crosses thorax
C. australis	A,te	Westernport Moreton Bay	"	median blue patches alternate with apertures	7E 2B 2D	"	0.7	with white dots in living test
C. cylindrica	A.te	Shark BayWesternport	"	"	10E 10B 4D	present	1.2	rope-like colony, short abdomen
C. moluccensis	IWP,tr-te	Exmouth Gulf Lizard 1.	"	3 blue patches in transverse line between apertures	$>20 \mathrm{E} 3 \mathrm{~B} 3 \mathrm{D}$	*	1.2	short abdomen
C. nigra n .sp.	A.te	Rottnest I.	"	"	$>20 \mathrm{E} 4 \mathrm{~B} 2 \mathrm{D}$	"	?	"
C. baudinensis	A.te	Rottnest l.-Albany	E	"	0 E 9 B 0 D 2 A	none	0.5	
C. pseudobaudinensis	A,te	Abrolhos-Lord Howe I.	"	transverse blue line or median patches between apertures	6 E 3 B 0 D 3 A	"	0.9	with white dots in living test
C. arafurensis	WP,tr	N. Australia	"	lateral yellow patches	6 E 4 B 2 D	"	?	-

[^1]relatively small number of endostylar muscles (4) and a leathery basal stalk.

Clavelina miniata Watanabe and Tokioka, 1973 from Japan has solitary zooids that separate from the parent zooid immediately following replication. The longitudinal and oblique muscles are equally numerous, distinguishing the zooids from those of Clavelina oliva n.sp. which has more oblique than longitudinal bands.
Clavelina minuta Tokioka. 1962 from Japan has only 4 rows of stigmata and is clearly distinct from all other species.
Clavelina obesa Nishikawa and Tokioka, 1976 from Japan and the Philippines (QM GH523, GH554, GH560) has rather stout zooids up to 2 cm that, like C. viola, are attached to basal stolons. However C, obesa does not have the tapering stalk of C. viola, it is much smaller and its muscles are principally transverse, confined to the thorax. In the latter character it resembles C. moluccensis but it has fewer muscles, and in life it is bluish-white without the characteristic pigment patches of C. moluccensis.
Clavelina viola Nishikawa and Tokioka, 1976 from southern Japan and the western Pacific (Nishikawa 1984) forms colonies of zooids (up to 4 cm long) that narrow to basal stolons. The 7.ooids closely resemble those of Clavelina oliva n.sp. which, however, is distinguished by its solitary or near-solitary habit.

Podoclavella polycitorella Tokioka, 1954a from the Tokara Is and the western Pacific (Nishikawa 1984) has a polyclinid larva (Nishikawa loc. cit.), and may be a species of Euherdmaniinae with 8 rows of stigmata.

Clavelina flava Monniot, 1988 from New Caledonia has thread-like zooids with a long oesophagus, the anus opening at the base of the atrial cavity, small ovary, large testis follicles and embryos developing in the oviduct - all characters indicative of Pychoclavella or Euherdmania rather than Clavelina. Further, the larvae lack the axial cone of the adhesive organs of Clavelina. They may have partly everted tubular adhesive organs. The ocellus is large. and although an otolith is reported, it is not shown on the figure (Monniot 1988, fig. 3 H). Colonies resemble those of Pychoclavella arenosa n.sp., with sand adhering around the common stalk. However, zooids have more stigmata - 10 to 12 rows instead of the maximum of 6 (in P. arenosa), the stomach is folded rather than smooth as in Pycnoclavella, and the siphons have lobed rather than smooth
rims. Thus, although the species has gonads in the abdomen, it appears to have closer affinities with Euherdmania than Clavelina or Pycnoclavella.

Clavelina arafurensis Tokioka, 1952
(Fig. 7. Plate Ie.f)
Clavelina (Synclavella) arafurensis Tokioka, 1952, p. 97. Nishikawa, 1984, p. 116.

Distribution
New Rfcords Western Australia (Exmouth Gulf, QM Gll987 8), Philippines (QM GH449 GH478).

Prfviousi.y Rfcorded: Arafura Sea (Tokioka 1952). Truk (Nishikawa 1984).

The colonies are found under ledges.

Description

External. Appearance: The colonies consist of lobes containing up to 12 completely embedded zooids extending parallel to one another to open on the upper surface where they project slightly. Lobes up to 1 cm high and about 0.5 cm in diameter branch off an irregular, branching, basal stalk.

F1،.7. Clavelina arafurensis: a,b, colonies (QM G1 1988 Gll987); c, $700 i d$ (QM Gll987); d, anal border, opened out and enlire (QM Gil1987). Scales: a,b, 2 mm ; c, 1 mm .

The glassy, upper thoracic portion of each lobe is slightly wider than the firm, translucent basal part. Vascular stolons of the zooids extend through the basal stalk, where new vegetatively produced zooids grow up into new, vertical zooidbearing lobes.

In lite zooids are purple with regular bright yellow triangular patches on each side of the dorsal midline between the siphons. The apex of each patch is at the side of the atrial siphon, and the rounded base of the triangle spreads around the base of the branchial siphon. There may also be a yellow streak along the dorsal surface.

Intrrnal STructure: Zooids are relatively small, about 0.6 cm long, of which thorax, oesophageal neck and posterior expanded part of the abdomen are all about one third. Apertures are on short siphons, the branchial apertureturned slightly venteally and the atrial aperture directed upwards, About 12 muscle bands on the thorax have formula $6 \mathrm{E}, 4 \mathrm{~B}, 2 \mathrm{D}$. These extend along the abdomen. There are about 32 tentacles in 3 concentric circles with the 8 large tentacles neat the base of the branchial siphon, 8 moderate sized tentacles in the middle circle, and 16 small ones in the anterior circle. The neural gland opening is long and vertical, protruding slightly into the pharynx.

There are 12 to 16 rows of 20 to 30 stigmata, The oesophagus is long, prestomach absent. and the large, roomy stomach is in the anterior hall of the posterior third of the zooid. It has 4 or more, sometimes irregular, rounded folds, apparently artefacts. A small, oval posterior stomach occurs before the gut curves around to open into the rectum at the posterior end of the sooid. The anal opening is bilabiate, the mestal lip with irregular, shallow lobes and the lateral lip with 2 smooth lobes. Gonads are present in the gut loop, although the newly recorded specimens are not mature. Larvae are unknown.

Remarks: Colonies and zooids, including pigmentation of the newly recorded specimens, are identical with thase previously recorded from the Arafura Sea. The species has smaller zooids than is usual for many species of Clavelinu, and colonies are less regular than is usual for species with completely embedded $700 i d s$. The stomach resembles that of Clavelina oliver n.sp. but is Further toward the posicrior end of the abdomen. The arrangement of the thoracic muscles also resembles that in C. aliva, however they are not so numerous. Zooids and thejr muscle bands also resemble those of C. elegans. However, the smatl completely embedded zooids and irregular colony together distinguish this species from all others.

Clavelina ausiralis (Herdman, 1899)
(Fig. 8. Plate 2a-c)
Steronklavella atestralis Herdman, 1899, p. 6.
Podoclavello austrativ: Koll, 1457a, p. 93 (part, specimen from Port Jackson); 1972c. p. 234; 1972d, p. 242. Not Symiavella ausiralis: Caullery, 1900, p. 1419 ? $<$ Clavelina psezdobaudinerisis).

Distriuntoon
Naw Recorde ? Victoria (Western Port, MV E53399). New South Wales (Ulladulla. QM G11953. Port Hacking. AM Y2142 Y2145 Y2154-5). Queensland (Moteton Bsy, QM (G9250 (i9253-4 G9256 GH 3890).
Previonsty Reconolo: New South Wales (Port Hackine - AM Y814 Kort 1972ce Port Jackson holotype AM U132, AM G63. Hẹrdman 1899. Kolt 1457a)

DESCRIPTION

Eniersal Aprearance: Colonies vary from top-stiaped with a thick stalk. the upper 1 cm of the zooids fanning out from the upper surface of the stalk in which the posterior ends of zooids are embedded; to massive colonies in which the Whole length of the long cylindrical zooids (up to 4 cm) are separate from one another arising (rom a basal plate of common test about 4 mm thick. Both sorts of colony have been taken from Moreton Bay. However, the latter type in which the zooids are separate from one another has been faken only from Moreton Bay.

Living colonies are always conspicuous. with yellow 10 yellowish-blue zooids in transparent test with three large bright blue patches in the median line - one over the anterior end of the endostyle. one between the siphons and one posterior to the base of the atrial siphon. There is a smaller patch of bright blue over the anus and white spots on anterior paits of the test.

Internal Structure Zooids are robush, with a relatively long, narrow oesophageal neck joining the thorax to the expanded (and often embedded) posterior end of the abdomen (containing the stomach, gut loop, gonads and heart). Body muscles are strong, although not particularly numerous, with the formula $7 \mathrm{E}, 2 \mathrm{~B}, 2 \mathrm{D}$. They continue to the posterior end of the abdomen, those on the left extending around to the vertral border and those on the right extending dorsally behind the stomach. There are 12 short, stumpy branchial tentacles. The vertical slit opening of the neural duct protrudes slightly into the pharynx. There are 14 to 18 rows of 50 to 75 stigmata There is no prestomach, and the stomach is about three quarters of the way down the abdomen, if has a suture line and sometimes wraps around each side of the intestine. The amus opens into the posterior-third of the atrial cavity. Gonads are

Fig. 8, Clavelina australis: a, colony (QM G9253); b, contracted 7ooid in test (QM GH3890); c, extended 700 id (AM Y814); d, larva (QM G9253). Scales: a, 2 mm ; b,c, 1 mm , d, 0.1 mm .
in the gut loop, male follicles, as usual, covering and obscuring the ovary.

When breeding, up to 100 embryos are present in a brood pouch that extends across the posterior end of the right side of the thorax from the posterodorsal corner. Embryos complete their development in the peribranchial cavity. Colonies from Port Hacking (AM Y84) in June have embryos in the brood pouch and atrial cavity in June. Moreton Bay populations collected in May and July also have embryos, although those from Ulladulla in July do not.

Larvae are smaller than is usual for this genus. The trunk is about 0.7 mm long, with the tail wound about three quarters around it. Sometimes the tail crosses the anterior cnd of the larva from left to right forcing the 2 adhesive organs on its left upwards and the one on its right downwards. The frontal plate is well developed, with slight lobes alternating with adhesive organs. Adhesive organs have a shallow epidermal cup surrounding a wide, shallow axial cone.

Remarks: The species is large, with long yooids resembling those of the new tropical species C. robusta $\mathrm{n} . \mathrm{sp}$. The species are distinguished by their musculature, pigmentation and larvae. Larvae of the present species are much smaller than those of the new species. The large zooids of the present species also resemble those of some larger specimens of C. moluccensis. The longitudinal and oblique muscles distinguish it, C. moluccensis having conspicuous transverse muscle bands only. Clavelina molnccensis can also be distinguished from C. australis by its transverse row of 3 pigment patches between the siphons and by its prestomach. Living specimens of C. pseudobaudinensis have the same white spots in the test as the present species, although zooids of C. psemalohaudinensis are completely embedded.

Clovelina enormis Herdman, 1880 from southern and eastern Africa (see Michaelsen 1930, Millar 1975) has long (5 cm) zooids rising from a common basal mass of test that is sometimes modified into a common stalk. The species resembles C. australis in the size and form of its colony, zooids, larvae and their brood pouch. However, C. enormis apparently has only about 4 endostylar muscles, and basally the stalk becomes very leathery, while in C. cuustralis the stalk or basal test is gelatinous and there are twice the number of endostylar muscles. Further, the known range of C. australis suggests that the species are not conspecific, C. enormis being recorded only from the eastern Indian Ocean while C. australis is known only from subtropical to temperate latitudes off the eastern Australian
coast. Michaelsen (1930) recorded C. enormis from Oyster Harbour, Albany (Western Australia), but again the record seems anomalous; the spccimen is probably one of C. moluccensis (known from Albany).

A single, possibly juvenile zooid, with the median pigment patches and musculature characteristic of this species, has been taken from Western Port (Victoria) and could be of this species, suggesting its range may extend further south than Uliadulla.

Clavelina baudinensis Kott, 1957

(Fig. 9. Platc 2d)
Clavelina baudinensis Kott, 1957a, p. 87 (part, specimens from Rottnest 1. with small larvae); 1972b, p. 166 (part, specimens from Rottnest 1.). Not Millar, 1966a, p.363; Koll 1972a, p. 4 (<C.pseudobaudinensis).

Disiriblotion

Nrw Recorns. Western Australia (Rottnest I., WAM 30.75; King George Sound. WAM 22.87).

Privioust y Recordeed: Western Australia (Rotnest 1. - holotype AM Y801, paratypes AM YIll8 Kott 1957a, 1972b).

The species has been taken from 2 to 12 m .

Description

External Appearance: The colonics consist of mushroom-shaped heads of soft, glassy test. onto which the zooids open, supported on firm, sometimes gelatinous, but often hard and leathery, stalks up to 5 cm long and 1 to 1.5 cm in diameter. The lower part of each stalks divides into short holdfasts or long prop-like branches (WAM 22.87). Sometimes the top of the stalk is divided so the head of the colony separates into lobes. Zooids are completely cmbedded, the test being only slightly raised over the upper part of thorax on the upper surface of the mushroom-shaped head of the colony. Zooids are up to 3 cm long, and quite robust. They extend down into the firm test at the top of the stalk.

Living colonies are white and translucent with one blue patch over the endostyle, 3 in a transverse arc ventral to the base of the atrial siphon, and a pair (one on each side) behind the base of the atrial siphon.

Internal Structure: The zooid is long and narrow, with a large roomy thorax slightly longer than the posterior expanded part of the abdomen containing stomach and gonads. The oesophageal neck is long and narrow, occupying about twothirds of the total length of the abdomen. Body musculature is unusual as both dorsal and endostylar muscles are absent, although there are 2 bands with branches extending along the dorsal side of the atrial siphon and a branch from one
of these crosses the intersiphonal area wether with a branch from one of the branchial siphon muscles. Thus, the museles are all longitudinal, with lormula OE.9B.OD,2A. Muscles extend from the thorax along the length of the abdomen. There are 6 large, 6 middle-sized and 12 small rudimen-

Fie, 9. Clavelina haudimensis: a. colony (WAM1 30.75): b. zooid (loolotype AM Y BOI): c, anal border (berlolype AM YMol): d. larta (holotype AM Yail). Scales: a smun, b. Imm; c,d. 0.1mm).
tary tentacles respectively in 3 conecntrie sings at the base of the branchial siphon. The opening of the neural gland is a vertical slit between two protuberant lleshy lips.

There are 17 to 20 rows of 50 to 60 stigmata. The oesophagus is long, and prestomach absemt. The stomach, in the anterion half ol the posterion expansion of the abdomen, is long and narrow. It has a suture line, but no other structural ridges although in section it is more or less rectangular with one concave side where it lies against and curves slightly around each side of the intestine. An oval, postetior stomach enlargement in the deseending limb of the gut. The ascending limb is occupied entirely by the reetum. The anal opening, near the posterior end of the atrial cavity, is bilabiate and each lip is irregularly lobed.

The ovary contains large eggs, 0.3 mm in diameter. These develop in the atrial cavity, where they are crowded in some zooids of the holotype (collected in November).

Larvae are small, the trunk only 0.5 mm and the tail completely encircles it. Adhesive papillat lie triradially, each a group of modiffed ectodermal cells on the end of a short stalh projeeting from a short frontal plate at the anterior end of the larval trunk.

Rrmarks: Kotl (1976), in describing Cperedohaudinensis, relers to eolonies of the present species containing the characteristic small larvac. from Laverton Bay. This is an error there are no colonies of (C. baudinensis from that location. Records of the speeics are conlined to the southwestern corner of western Australia from Rottnest 1. to King George Sound, and apparently the species is indigenous to that area. The speeies can be distinguished from C. preettohaudinensis which has a similar colony - by its tonique thoracic musele formula, distinetive arrangement ol blue pigment patches, and its small larvae. There is no other species that eompletely lacks andostylar musclen, atthough C. fecunda has very low. Nevertheless, this does not indicate at relationship beiween these iwo species, for they are separated by many other characters.

Clavelina cylindrica (Quoy and (inimard, 1834) (Fig. 10. Plate 2e, D)
Polvelinum eyfindrcum Quoy and Gaimard. 1834, p. 6is.

Chondrowathey maciomaldi Bronn, 1862. Tal. 16 Figs 1 7. Haruncyer 1909. p. 1427.
Chomdrosuachs (erdindrica): Caullery. 1908. p. 229; 1909. p. 52.

Chondroistaches smbindra: Hartmever 1909, p. 1427.

Fig. 10, C/avelina cylintrica: a,b, zooids from left and right respectively showing test constriction where zooid attaches to common stalk (WAM 581.2.1. QM GH4068); c. pooid showing brood pouch with cmbryos (AM Yl190): d. lana (SAM 1氵1962). Scales: a-c. 1 mm ; d, 0.2 mm .

Clavelinat culindrica; Miçhaelsen, 1930, p. 475, Pedoclavella sylandrica: Kott. 1957an p. 91: 1972it. p. 5 (part, spectmens from West I. Wright 1.): 1476, p. 56 (part, specimen from Western Port). Millar, 1960. p. 64: 1963a, p. 716: 1966a, p. 364. Not Kot 1972h, 5. 167: 1975. п. 1 (© C. moluecensis).

Podoclavellaumitralis, Kott, 1457a, p 93 (part, specimen from Port Denison).

Disikianticon
New Recokps: Western Australia (Shark Bay, WAM 761.83; Wookoora Station, WAM 823.83; Houtmans Abrothos, WAM $762.83 \quad 193.87 \quad 194.88 \quad 223.86$: off Dongara, WAM 763.83. Cockbuen Sound, WAM
 60.83764 .83984 .83 , OM G9482; Shoalwater Bay. WAM 115.75; Mandurah WAM 85.75867 .86 ; Margaret River ${ }_{\text {F }}$ 866.86: Albany. WAM 28.75). South Australia (Great Australian Bight, SAM E1985, QM Glll279 GH4151: Yorke Peninsula, SAM E1961: Sipeneer Gulf, QM GH4287-8 GH4396). Victoria (Waterloo Bay: QM GHI279; Portsee, QM GH4068: Bass Strait, MV F53291: Wilson's Promontory. MV F53362-3. Mallacoota Intet, MV F53660; Balnarring Beach MV F53658). Tasmanis (Bruny I., MV F53654, SAM E1962 soluthern Tusmiania, 'TM D1922).

Previousicy Krcorpra Western Australia (Cockburn Sound Michaclsen 1930, Millar 1963a, AM Y1187 Y 1190 Koti 19579 A Albany Millar 1903a). South Nustralia (St Vincent tiulf SAM L1986 Kott 1972a). Victocia (Bass Strait - MacDonald 1858; Port Ptillip Bay - Millar 1963a, 1966a; Western Part Bay

Quoy and Gaimard 1834, Millar 1960, Kott 1976). Queensland (Bowen - AM 11186 Kott 1957a).

The specees is ofteen taken in storm debris washed up on beaches. The record lrom Queorsland is anomalous, extending the range of this otherwise temperate species antu the tropies. It is possible that the apecimen was Hoating free in the East Australiath current. The greatest depth from which the species has been reconded is 7 m in Bass Strait.

Descripmon

External Appearance: The rope-like colonies of this species are distinclive, consisting of a long central stem (up to 60 cm or more long and 2 to 4 cm in diameter) with separate zooids crowded along its length. Occasionally colonies are found in which the central stalk is attached along part of its length (QM GH4068): and sometimes it is branched at the base io form holdfasts. Zooids ate short (seldom more than 1.0 to 2.0 cm long) and entirely free, soparated from the central stem by a marked constriction through which the vascular stolon of each zooid passes. The colony is sometimes attached to the substrate (weed or rock) by the basal (thickest) part of the stalk. In life, the colony is opaque blue or blue-grey, Pigment patches in the median line, between the siphons and over the anterior end of the endostyle and the anus, sometimes persist in preserved
material. In preseryative the zopids are often blue and the lest is always translucent.

Iniernal Siructure The thorax is longet than the abdomen. However. since muscles are confined to the thorax it is ofter contracted in the preserved material, and thorax and abdomen are about equal length. The thoracic mascle formula is $10 \mathrm{E}, 10 \mathrm{~B}, 4 \mathrm{D}$. Although the endostylar muscles do not extend onto the abdomen. they do extend to the end of the thorax rather than the dorsal surface. They are oblique rather than transyerse. Consequently their contraction both sbortens the thorax and tends to draw down the ventral sutface relative to the atrial siphon. Both siphons are rather wide with circular muscles around them and are often flaning and trumpet shaped.

About 24 sickle shaped branchial tentacles are present. The transverse vegsels expand into relatively short and pointed dorsal languets over the dorsal sinus. There are from 9 to 13 rows of 50 to 60 stigmati. A small. rounded prestomach lies about halfway down the relatively short oesophagus. The stomach is a short oval halfway down the abdomen and there is also a large oval posterior stomach in the descending limb of the gut loop. The rectum extends almost from the pole of the gut loop at the posterior end of the abdomen to the base of the atrial siphon. The anal border is smooth.

Gonads are present in the gut loop, the smalt pear-shaped male follicles spilling over around the outside of the loop on the lett side of the abdomen. A large brood pouch, formed by the expansion of the oviduct at the postero-dorsal end of the left side of the thoras, comtans developing embryos, seldom more than 10 . all at very different stages of development. Some have larval organs fully developed and others about hall the size are without obvious development of organs. It is probable that fertilisation occurs in the brood pouch.

Embryos are present in the broud pouch in April, November and January from Shark Bay and Cockburn Sound (WAM 73.75 758.8. 3761.83 764.83984 .83); in September from Albany (WAM 28.75); in Octoher from Western Port Bay (NMV F53658): and in November from southern Tasmania (TM D1922). However, they are not alwayk present at these times from these locations. Only few specimens have been taken from May to August and these have no larvac. From present data, the species appears to breed from spring through to the following autumn.

Larvae are large and almost spherical, the trunk about 1.2 mm diameter. They have 3 adhesive
organs, triradially arranged and arising from a flat frontal plate that is not expanded into lobes. The adhesive organs consist of a shallow cup of differentiated epidermal cells around a broad. shallow axial cone. In the early embryo, the tail is wound verticully around the median line ol the larval trunk with two adhesive organs and the cercbral vesictc just to its lelt, and the third adhesive oryan to the right. As the larva develops the tail passes horizontally across the anterior end of the larval trunk from lelt to right, the two adhesive organs on the leli moving up to the top and the one on the left moving to the ventral part of the anterior end of the trunk. The tail is long, almost completely encircling the trunk. The pertoration in the larval test over cach axial cone is conspicuous in this species.

Remarks: Koti (1957a) and Millar (1960, 1963a and 1966a) have suggested that this species and C. australis are conspecific. In fact. although hoth have rooid. with large, rohust thoraces and pigment patches in the median line. there are many distinguishing features.

Clavelina cylindrica invariably has short zooids, with an especially short abdomen arranged around a contral common stalk; the zooids are always entirely frec of the common test, from which they are separated by a sharp constriction; they have a prestomach in a relatively short oesophageal region; their thoracic: muscles do not extend onto the abdomen; and they have an almost spherical larva and a rounded brood pouch. Clavelina austrulis has long zooids with a long ocsophageal neck and no prestomach. Zooids arise from a basal mat or stalk from which they are never separated by a constriction and in which they are sometimes partiatly emhedded. Their thoracic muscles extend the whole length of the thorax. Their larva is long, and their brood puuch is elongate. lying across the posterior end of the thorax.

Kott (1972a) confused C. cylindrica with C. molucemeir, as neither have abdominal museles and both have a prestomach and rounded brood pouch. Again the constriction at the hase ol each separate zouid where it joins the central stalk distinguishes C. cylindrica, as does the pattern of its modian pigment patches, the course of its thoracic muscles and its smaller larvae.

Clavelina dagysa (Kott, 1957)
(Fig. 11. Plate 3a)
Podoclavella dagg:sat Kott. 1957a, p. 93.

Disikiblatern

Vrw Recokbs, Wemern Almealia (Geographe Bay. WAM 4.75 121.75, QM (j4485)

Privionsiy Rforokisu. Western Australiat (Rotmest 1. - syntypes AM Y118s. AM Yl189 Y/l91 Kotl 1957a).

The species appears indigenous to the Western Australian coast - from Cape Naturaliste 10 Rotenest 1 The maximum recorded depth is 20 m .
Drecriftion
Esterval Aprlabanct The species is relattively large (up to 4 cm long) with a wide (up to Icm) thorax and a slightly narrower cylindrical

1u II. Clavelima clagersa: a. colony (WA.1 121.75): h. solitary individual (ayntype AM Y1189); e.d. larvae showing dultesive organ lrom above and from the Is (1 side (syntype AM Y/lski, Scales: a,b, 2mma, c,d. 0.2 mim.
stalk. counded basally where it is lixed in sand and rubble. One specimes bas been taken (AM l'll91) in which two zooves are juinced hasally. the posterion expanded portions of their abdomina being cmbedded in common test. The lest ower the thonat is always noft and glassy. While that of the ahdominal stath is lirm, wils sand and whell particlen attuched posteriorly. The zooid externds down into the base of the stalk and the vascular appendages are shart. The apertures. of shom siphons, are large. und llared when they are expanded. The branclial apertare is tarned pusitern-veritatly and the atrial turacd posterodorsally. In lile the rooid is unitormly bloce and this solvor icmains in pleservative.

Interval Sirbig"thri Zooils are lang. the thoras wifle and roomy, joined by a narrow ocsophageal meek of variable lengeth to the posterion expanded part of the abdomen containing the stomach. gul loop, gonads and heart. The thorax is from half to one-thied of the total length al the ronid. The thoracic muscle formula is $+20 \mathrm{E}, 3 \mathrm{~B}, 3 \mathrm{D}$. The muscles extend along the whole length of the ahdomen.

There are 8 robust bennchial temaches alternatming wht K smatler one in a circle just anterior to the lager ones. These all dernate with rudimentary kentacke attached to the undersids of a branchial velum progecting slighty into ths base of the beanchial siphon. The duct of the neural gland protruder mes the pharyinx and has a curved or straight verical operng. The dursal languels are large thiangular expansions of the eransverse memhranes over the domal simus. Stigmata are in 24 to 30 rous of about 100 .

The long wesuphagus extends without interruption to the stomach in the posterior end of the abdumen. I here is no prestomach, The stomach itsell is oval. witts a sulure line, hut although the stomach collapses into folds thete is no sign of any structural latds or edelges. The rectume cxiends. the whole length ol the lang abdomen and projects a stort way up the thorax, the anus opening into the atrial cavity in the vicmity of the loarth last row of stigmatia. The anal border has about 20 lohes. "The gonads are, ins usuat, it the gut loop. They consist of pear-shaped male follicles surrounding the ovary and apreadiag oter the left side of the gut loon. There is mo hrond pouch and embiyos develop in the peribranchial cavity. they are presemt in columies costected in Nolvember
L.avac are larec. the trunk being l.som long witt the tall wound threc-ymartern of the distance ardund it. They have an rectlus and an wollith. 'The lrontal plate, supporicel as usual by a stolon

From the abdominat pare whe incepern astult. is flattened. However, the ustal clavelinid adherive organs are not present. Insicad. each side of the fromial plate is extended into an are old diblerentiated epidermal cells that may have all adhesive function. These two ares enclose the slighty cunves centrisl part of the froital plate.

Remarke A colung al 6 . dagosa comsisting of 2 swoids. their abdomina embedded in it cummon stalk in recorded ahove: [his provides evidence that this species, and prohably C. asbeumbm. replicate from terminal ampultace of the vasculat stolon as in atl clavelinids. As in Ca miniara Waltanahe and Tokioka. 1973. From Japan. replicated zooids probably separate 1 rom ons another in hecome sulitary.

Clarelma dagisa shares many ol its principal charasteristies with the sumthern Austratian C. ostrearlum. Both specics have wides roomy thoraces with ohligue muscle batde dominating the musculature: Iong zooids with long oesophageat neshs, and the posterior end of the abdomen expanding in the halse wh the stalk; shore vaseular stolons: couids of the same uniform blae colour: and the thoracic est glassy and hatloon-like. sharply difierentiated from the test of the stalk. Botb species have the posterior end of the stalk cexpanded, but in C. dengose it is not hard and leathery and does not form a concal holdfast as it does in (C. nstremium 'the specten are convincingly separated by their Sarvac, which in C. Afagysudo not have the usuat clavelinid adhesive argans white in C asmearinm they do the range ol these iwo indigenous species dese 100 overlap - C stagisa mot being recorded south wl Cicugraphe Bay and C, usprariem not being recorded west of Atbing. However, they do not appear to be sister species. Another large and apparently solitary species. Cluselinu brasiliensis (Millar, 1977) from the Brasitian Shell, has the same moxtificed format laryal plate as C. despse. suggesting that it maty be a plestomurphe chatecter inherited from some common ancestor father than heing dsonciated with the isulation and speciation of the Jatter species in Australian waters.

The other latge. sulitiry species commonly found in Australian waters. Clavehta meridtome. is. is tropical and is mos recorded south of Howhman's Abrothos on the Western Australian conast. It is distinguthed from berth C. denersatad C. oxtreariam hy its long thorsx, more numerems thuracic thusck bands, relatively short mosids, long vastular stolon, and the absence al the blue pigenentation su charatherstic ol the presont species and its South Australian relative.

Clavelina fecunda (Sluiter. 1904)
(Fig. 12)
Podoclavella fecumda Sluter, 1904. p. 7.
Clavelina fecundr: Tokioks, 1967a, P. 101. Monniot. 1988. p. 203.

Distribtition
New Rfcords. Western Australia (Rotenest 1.). Queensland (Heron 1, QM GH4075 77 G114086; I izard I.. (GH4110) 1 GH4114 7). Philippines (QM GH405-6 GH474). Northern Territory (Stephen's Rock, QM GH4697).

Previonsty Retormbls. New Caledana (Monntot 1988). Indonesia (Sluitcr 1904). Palau Is (lokioka 1967a).

The species appears to be a tropical western Pacilic one. recorded from shallow intertidal waters down to 20 m in coral reel habitats.

Description
Extrrnal Abriarance Despite their small size (about lem long) the zooids are conspicuous amongst the cryptofanm because of their bright colour, having yellow patches each side of the

Firi 12, Clavelina fectuda: a,b, colony (QM Gll4077 and from Rottnest 1.); c,d, 7ooids showng numerous eggi and incuhating embryus in dustal part of unduct (QM (iH4175); e, rooid (Rottnest I.): f. larva (QM GH4075). Scales: a,b, 2 mm , c-e, 1 mm ; f. 0.1 mm .
thorax, thlue in large patehes over the endorsyle, between the siphons and spreading around the atrial siphon and over the dorsal lamina, and two lighter blue patches on each side of the thorax. Io preservative the zooids become uniformly dark blue

One solitary yoolid was taken, but its basal test was crowded with masses of terminal ampullae. A colony consists of up to 10 crowded zooids arising from a basal mass of common test in which the abdomina of the zovids are partuatly embedded. The thoracic test is clear and glassy while the lower stalk-like section of the free part of tath zooid, and the basal test are firm and translucent, Zooids are up to lem forg and the expanded thoraces up to 0.5 cm wide.

Internat Strueture the thorax is about one third of the length of the zooid, with its branchial aperture turned ventrally ind the atrial aperture directed upwards. The thoracic muscle tormula is $7 \mathrm{~F}, 5 \mathrm{~B}, 3 \mathrm{D}$, and all the muscles extend to the posterior end of the abdomen. Sometimes the ventral oblique muscles are obscure, There are क large branchial tentacles alternating with smaller ones. The opening of the neural gland is a vertical slit

There are 16 to 20 rows of about 50 stigmata. The oesophageal section of the zooid is moderately long. There is no prestomach. The stomach. in the posterior end of the abdomen, is quadrilateral in section, and curves, around against the mesial wall of the intestine, It has a fine ridge enclosing, with the suture line, a pear shaped area on its onter wall. A rounded posteror stomach lies almest in the pole of the gut loop. The proximal part of the rectum is voluminons and yellow. The smooth, bilabiate anal opening is at the posterior end of the thurax.

In mature specimens the gonads, in the loop of the gut, are conspicuous, the testis follicles spilling out over the left side of the gut loop. Large eggs are numerous and fill the whole length of the oviduct, apparently beginning their development in the terminal, expanded part of the oviduct. which forms a brood pouch - ahthough this docs not markedly protrude outside the wall of the thorax.

Embryos and larvae are present in the newly recorded specimens from Heron I. collected in late October and carly November. They are also present in some of the specimens from Lizard 1 . which were all colleeted in Jine. They are not present in specimen lot QM GH4117 also collected in June. Despite the large eggs, larvae are relatively small, the trunk being 0.75 mm long with the tail wound about half way around it. Three adhesive
organs lie on a flat frontal plate, each with a cup of cpidermal cells around a central cone. The frontal plate is produced into small lobes between the adhesive organs.

Remarks: Tokioka (1967a) remarked on the unusually fecund appearance of this species, and those newly recorded specimens that have embryos, are no exception. Other distinctive characters are the short, stumpy zooids, and the bright yellow colour in the living specimens. Philippine specimens (QM GH474) are the same colour as those recorded from Australia, described by the collector (M.E. Cowan) as 'transparent blue with yellow markings'. Colonies and zooids of the present species resemble those of Clavelina elegans (Oka, 1934) from Japan, and conspicuous morphological differences in the preserved material of C. clegans and C. fecunda have not been detected. In C elegans, laryae have a longer (0.9 mm) trunk, and larger zooids (2 to 3 cm) than those of the present species, and yellow patches are not present in living specimens. Clavelina ohesa has small stumpy zooids without yellow patches, joined by stolons rather than heing partially embedded in common test as in the present species, and with transverse rather than longitudinal musculature

Clavelina meridionalis (Herdman, 189f)
(Fig, 13. Plate 3b - d)
Podoclavelia meridionalis Herdman 1891. p. 603: 1899. p. 4. Harmeyer, 1919. p. 104, Hastings, 1931, p. 81. Koll 1957a, p. 91: 1972d, p. 241. Not Stuiter, 1895 , of 10.5 ($<$ (rohusta n.sp.): Pizon, 1908, p, 197 (6 C. robusta n.sp.). Kutt 1972b, p. 167 (< C astreartum).
Podoclavella procera Sluter, 1904, p, \&
Clavelina chormis: Kott, 1957a. p. 85.
DISIRTBUITON
New Records Western Australian (Dampier Archipelago, WAM 26.75; Monte Bello Is, W/M 749 50.83: Houtman's Abrohos WAM 747-8,83). New South Willes (Port Stephens, QM Gl0149. AM V1999: Soluary is, QM G9641). Queensland (Bowen, QM GH705 GH4080: Mackay. QM G4944 G9978).

Proviously Recoriptid: Western Australia (Port Charles - AM Y 1159 Y 1255 Kout 1957d: Cape Boileau, Cape Jaubert Hartmeyer 1919). New Soutl Wakes (Port Stephens AM U3936 Herdman 1899; Pori Hacking - AM Y818 Kott 1972d; Port Jackson holotype AM U113. AM G12247 Herdman 1899), Queensland (Mackay - AM Y1192 Koti 1957a; Low 1s - Hastings 1931). Indonesia (Sluiter 1904).

The species is tropical. although its range on the eastern Ausiralian coast extends into the subtropical waters of New South Wales. It has been taken at depths down 1020 m .

Description

External Alpearance: The species is large and solitary, up to 20 cm long, consisting of a cylindrical thoracic section in translucent (but not glassy) test that is a half to one-third of the total length and is from 0.5 to 1 cm widc when expanded. The stalk narrows from the posterior end of the thorax to its base, where it somctimes breaks into fine hair-like roots or occasionally branches off the stalk of another zooid (see AM Y1255), but most often is fixed directly to the substrate. As it narrows, the stalk becomes increasingly hard and leathcry. In its upper part it contains the abdomen of the zooid but toward the base it contains the long vascular stolon. The large terminal branchial siphon is turned over with its opening directed toward the base of the rooid. The atrial siphon is directed upwards. Both siphons flare when they are expanded. In life the thorax is a transparent green with a yellow patch each side of the intersiphonal region and along the endostyle. Some photographs of this species show the test pink. In preservative the anterior part of the thorax, brood pouch and abdomen are dark bluc to black, but the remainder of the thorax is cream to brownish cream.

Internal. Structure: The zooid is robust but not very long. Thorax and abdomen together are about 3 cm long in contracted specimens and even in living zooids are only about half the total length, the long vascular stolon occupying most of the stalk. The muscle formula is $25-30 \mathrm{E}, 2 \mathrm{~B}, 2 \mathrm{D}$. Dorsal branchial siphon muscles and the anterior twothirds of the endostylar muscles extend more or less horizontally across the body to the dorsal surface where they turn posteriorly and extend as fine bands down onto the abdomen. There they are joined by the posterior endostylar muscles which are truly oblique, extending from the endostyle to the postero-dorsal corner of the thorax and onto the abdomen in a dorsal and ventral band. Branchial tentacles are arranged in 4 rows, the largest in the posterior row. The neural gland opening is a vertical slit between two fleshy, protuberant lips. Dorsal languets are long, pointed projections from the triangular expansion of the transverse vessels over the dorsal sinus. There are about 35 rows of 70 to 100 stigmata.

The oesophagus is moderately long, without a prestomach. The stomach (in the posterior end of the abdomen) has 3 longitudinal ridges as well as the suture line in its inner lining. Folds in the stomach wall of some specimens are, apparently, artefacts of preservation. The stomach is often stretched into a long, narrow oval, but in other specimens it is more expanded. The gut is often

Fis. 13. Clavelina meridionalis: \mathbf{a}, \mathbf{b}, whole rooids (AM Y1255. QM G9641); c,d. thoraces removed from test, showing muscles, embryos brooding (AM Y1255, QM (iH705); e, larva (AM Y1255). Scalcs: $a, b, 5 \mathrm{~mm}$; c,d, $2 \mathrm{~mm} ;$ e. 0.2 mm .
voluminous and filled with mud. The anal opening is about one-third of the distance from the posterior end of the thorax, and its border has about 10 rounded lobes. Gonads are present in the gut loop, spilling out over the left side of the intestinc and the proximal part of the rectum. A brood pouch forms from the expansion of the distal end of the oviduct, which extends across the posterior end of the right side of the thorax. Developing embryos are present in specimens from northwestern Australia collected in September (AM Y1255) and in specimens from Bowen collected in March (QM GH705).

The larval trunk is 1.1 mm long and the tail is wound only half way around the trunk. There is the usual frontal plate cxpanded into small lobes that alternate with the 3 adhesive organs triradially arranged.

The species is known to regenerate new zooids from old stalks (A. Birtles pers. comm.). The presence of a single zooid arising from the stalk of another suggests that occasionally replicates do develop before resorption of the adult zooid.

Remarks: Being solitary and of large size this species resembles Clavelina dagysa and the rclated species C. ostrearium from southern Australia. Like the latter spccies, C. meridionalis is known to regenerate new thoraces from persisting stalks: and like C. clagysa, it probably replicates zooids from the terminal ampullae of the vascular stolon. It is not known if rooids thus formed subsequently separate from the parent, as in C. miniata Watanabe and Tokioka, 1973. Clavelina meridionalis is isolated from both C. dagysa and C. ostrearium by its tropical range. The species is further distinguished by its larger number of transverse (endostylar) muscle bands, its long vascular stolon that occupies an appreciable part of the length of the stalk, its colour, and its smaller larvae. The brood pouch, extending across the posterior end of the thorax, resembles that of C. australis rather than that of C. moluccensis and C. cylindrica.

Kott (1972b), overlooking other differences, misidentified specimens of C. ostrearium as C. meridionalis on the basis of its solitary condition.

Podoclavella procera Sluiter, 1904 resembles the present species in all respects, Sluiter even having recorded the fact that the musculature on the thorax was largely transverse.

Clavelina mirabilis Kott, 1972
(Fig. 14)
Clavelina mirabilis Kott, 1972b, p. 165.
Distribution
Nfw Ricords: None.
Prfviousty Recordfir: South Australia (Waldegrave I. holotype SAM E902, paratype SAM E903 Kott 1972b).

The species is taken at 23 m in gravelly sand. So far it is known from only a single location in the Great Ausiralian Bighı.

Description

External. Appearance: Colonies consist of a wide, wrinkled cylindrical trunk rising vertically from a spherical sand-covered base (2 to 5 cm in diameter) that is probably buried in the substrate. The trunk divides into branches each supporting a group of long zooids, their thoraces projecting separately from one another. The test is soft throughout, the spherical basal portion being protected by its brittle sandy outer layer.

Living specimens are buff or yellow-brown but in preservative the firm test of the stalk is reddish-

Fic; 14, Clavelina mirabilis (paratype SAM E903): a, colony; b, thorax, removed from test; c, antero-dorsal part of thorax showing muscle bands. Scalcs: $a, 1 \mathrm{~cm} ; \mathrm{b}, 1 \mathrm{~mm} ; \mathbf{c}, 0.5 \mathrm{~mm}$.
purple, while the projecting thoraces are more or less transparent.

Internal Struoume Zooids ate long, up to 4 cm . Each conisists of a relatively short thorax and a long oesophageal neek that extends through the trunk of the colony and down into the spterical base where the rounded posterior part of the abdomen, the posterior vascular stoton and the terminal ampullac, are located. The musculature consists of oblique and longitudinal bands. with the formula 7E,8B,1D. The muscles extend along the length of the abdomen. An unusual transversc muscle originates as a branch from the sixth branchial musele band ahout haffway down the thorax. It extends dorsally beneath wher longltudinal muscles, with which it exchanges some libres. At the base of the atrial siphon it breaks. into narrow branches that join circular muscles of the atrial siphon. Branchial tentacles are in 3 rows, and the neural gland opening is simple and circular. There are 15 rows of about 45 stigmata per row. There is a long oesophageal neck, and the stomach, at the anterior end of a posterior expanston of the abdomen. is quadrilateral in section. Coonads of the usual type are in the loop of the gut posterior to the stomach. The larva of this species is not known.

Remarks The species resembles the new tropical species Clavelina robusta in its large. partially embedded zooids and in its musculature. However, C. rubusta has an irregular branching basal stalk, or a massive basal test from which the zooids rise directly rather than extending through a branching vertical trunk that intervenes between the basal test mass and the zooid-bearing head. Colonies sometimes have a superficial resemblance to C. pserdobaudinensis which often has a similar massive hasal test mass. Zooids of the latter species however are completely embedded, and the thoraces are not free as in the present species. The remarkable transverse musele that crosses beneath the other longitudinal muscles from the centre of each side of the thorax to the base of the atrial siphon is reminiscent of C. coerulea Oka (see Nishikawa and Tokioka 1976) in which a muscle extends from the attial siplon to cross the predominantly tronsverse thorax muscles. However, the course of this unusual muscle in C. coerulea is outside the transverse muscles, while in the present species the anomolous muscle runs inside the other predominantly longitudinal ones, The transverse muscle in the present species clearly originates as a branch from a longitudinal muscle and its formation could be through the mohilisation of fibres from the successive longitudinal muscle bands it crosses.

Clavelina motuccensis (Sluiter, 1904)

(Fig. I5. Pate 3e-b)
Clavelina (Podoclavella) meridionalis Sluiter. 1895. p. 165.

Podoclavella moluccensis Stoiner, 1904. P. 5. Kot 1957a. p. 90; 1972a, p. 5; 1972b. p. 167. Not Van Narme. 1918. p 130; Hanting 1931. p. 82: Tokjoka 1967a, p. 105: Millar 1975, p. 211- Lokwka aud Nishikawa. 1976, p. 347 (alt - C. robusta n.sp.)
Podaclavella cylindrical Kott. 19720, 乃, 5 (part, specimens from Halle Cove): 1972b, p, 167, 1975, 0. 1, 1976, p. 56 (part, specimens From Mallisootit Inlet).
The species bame olten is misspelt and cren Stuize (1904) used two different spellings. The name derive's from the Moluccas, the Irdonesian island group that is its type location.
Distrane H 10 N
Nrw Records: Western Australis (Exmouth Gult. QM ($\mathbf{4} 487$; Hourman's Abrolhos, WAM 374.80; Shark Bay, WAM 757.83: ofl Dongara. WAM 756.83: Cockburn Sound. WAM $37.72 \quad 31.75$ 151.75. QM G9671; Bunbury, WAM 19.75; Alfury, WAM 752.83854 .83). South Australia (Great Australian Bight, QM GH976, SAM E1988.9; FJeuricu Petrinsula. SAM E1964; Nuyts Arehipelago, SAM E1965, Yorke Peninsula, SAM E1966. Si Vincent Ciulf, SAM El967 N, QM G9315 GH406io 7 GH14069 71, BM 1451.9,10.8: Kangsroo 1., QM Gl(996). Victoria (Bass Strait, MV H376). Qucensland (Heron 1., QM G9517 G10041 G11913 GH359 GH408s; Lizard I.. OM G9790: Marthat Ridgeway Reef. QM GH246 GH543), Philippines (QM G12754 (iH410 GH442 3 (Gll555). Singapore, ZMC 22.7.07.

Previonsir Rreompor: Western Australia (Cape Boileau Sluter 1885; Cockburn Sound AM Y120 Kott 1957as; Hamelin Bay AM Y1197 Kott 1957 a. Albany - AM Y1199 Y(203) South Australia (Greast Australian Bight SAM El963 Kott 1972b, SAM F2086 Kott 1975: Spencer Gulf AM Y 1198 Kut 19573. SAM El969-72 Kott 1972it, 1975; St Vineent Gull SAM E991 Kolt 1972a). Victoria (Maltacootn 1 niet - Kote 1976). Indonesia (Sluitet 1904).

Although there afe no records from New. South Wales. the species has been pholographed there, at Jervis Bay and Port Ssephens (photos P. Frederickson). This apparently is a tropical western Pacific species. It occurs quite commonly it the Philippones (see new records), It is seasonal in some locstions (e.g. Tiparia Ree)? Shepherd fide Kort 1972a), dying off at the beginning of summer and reappearing in early winter, Apparently this is not always the case for there are records from Cockburn Sound for every month except May and records from the tropics anclude the winter monthis,

Description

Exterval Appearangt Large itregular colonies with single zonoids or upright stalks support groups of zooids separated from one another to various degrees, from whole zooids to at least the thoraces separated. The lest of the basal stolons

or test mass and the lower part of the zooid-bearing Whes is firm and only slightly translucent, and the test over the thoraees is solter and more transparent, although it is not glassy. Sometimes the hasal test develops into a thick stalk-like support for the colony and sometunes it forms Meshy stolons. The free, branehed, rooid-bearing clumps or single zooids arc from about 0.8 to nearly 3 cm long.

Living zooids are blue, some pale, others darker. the colour conspicuous, showing through the transparent test. A charaeteristic pattern of patches of darker blue is always around the anterior end of the rooid. This consists of a transverse line of 3 blue spots between the siphons. a patch over the anterior end of the endostyle,
another posterior to the base of the attial siphon and a small spot over the anus, These patches of blue persist in preservative though zooids are often bluish-black.

Internal Struiture: Zooids are from 0.5 cm 102.5 cm long. The thorax always longer than the abdomen and, in preserved speeimens in which the museles are contracted. it is no wider than the abdomen. The vaseular stolon is long. a great part of it in the upright zooid-bearing stalks. Terminal ampullise of the vascular stolon are numerous, branching off along its whole length.
The apertures are on short siphons, the atrial usually terminal, turned slighty ventrally, and the branehial subterminal and curved ventrally and posteriorly. Thoracic muscle bands are all
tansverse, extending aeross the sides nit the body 10 the dorsal horder where they disappear. A few fine bands sometimes can sometimes be detected along the dorsal surface extending onto the abdomen. and. although these presumably are present always, they are inconspicuous and difficult to demonstrate in unstained material. The muscle formula is $20-30 \mathrm{E}, 3 \mathrm{~B}, 3 \mathrm{D}$. Contraction of the transverse thoracic muscles causes the thoras (1) become long and narsow.

There are about 24 hranchial tenacles of varying size. The neural gland opering is elliplical, set reatically and slightly ohliquely. litum if ion 22 rows of about 80 stigmata are in the heanchial satc.

The oesophagus extends down the anterior onethird of the abdomen, interrupted about hallway along jts length by a small rounded prestomach the stomach is large and romy. Cienerally its internal lining is interrupted only by the suture line. however, in a large specimen from St. Vincent Ciulf (QM GH4066) there are also 3 fine ridges. A large posterior stomach occurs it the posterior end of the descending limb of the gut Joop before it curves around and expands into the rectum, whith occupies the whole of the ascending limh of the loop. The anal opening is ahout hallway up the thorax. its border smooth and bilahiatc.

Gonads are of the usuat form. located in the gue loon posicrior to the stomach. and the pearshaped male follicles spill out over the posterior chd ol the gut loop obscuring it. Eggs are relatively small. Developing embryos are present in a rounded brood pouch formed by the cxpansion of the distal end of the oxiduct projecting from the postero-dorsal corner of the thorax. They contimue their development in the peribranchial cavity. Embryos are present in colonies from Rottnest (WA) and Yorke Peninsula (SA) sollected in Oetober to December (WAM11.275. AM Yil96. SAM El966k and from Bass Strate in December (NMV H376): in one colony lrom the Fleurieu Peninsula (SA) aken in July (SMM E1964), and in colonies from Heron I., (QM G9517) in November. Young colonies were common al Heron I. in May 1988.

The larval runk is 1.2 mm long and is atmost spherical. Adhesive organs are large, with the usual cup of nodified cpidermal cells around the central conc. They ate supported by thick stalks axising from a broad frontal plate which is produced into cunspicuous lobes belween the adhesive orgams. The tail winds completely around the trunh.

Remarks Colonies of this species resemble those of C. ausmalis and C. robusta n.sp.i and some of the larger specimens also hove poovids al
similar size However. C. mofloromasi cam be distinguished readily by its transverse musculasure, absence of conspicturs tomstien on she abdomen, line of 3 pigment patches betwect the siphons (in additan to the mbdian patches derasal and ventral to the atrial and branchial sighons respectively) relatively shor ocsophageal neck. prestomach. counded broud pouch, and a lirge larva with a long larval tail that eompletely encircles it.

Clavelina curindrica las a similar brond pouch and prestomach but differs in its oblique and longitudinal museles. even shorter abdomen and regular colony. C. nigred n.sp. has simila transierse muscles and prestomach but lacks the charactersisic pigment patches. C. coperducu Ohas also has similar iransuerse muscles but there ario also longitadinal muscles, zonids narrow toward the base. and lack the prestomach.

Clavelina molucensis does occur in the Ihhlippines However the records of Vian Name (1918) and Millar (1975) from that location, as well is thone ol Hasting (1931) from Low ls. Tokioka (1967a) from the Palau Is, and Johwhas and Nishikawa (1976) from Japan. are not of thes species. Podoclawello mollecensis: Van Vance. 1918 inchudes numerous species including onc of the genus Euferdmania). It is walikely that the present species is included, however for all his specimens had predominantly longitudinal mus. cles that continue onto the abdomen. Some of Van Name:s specimens probably are conspectile with C. moleceensis: Tokioka 1967 a. Poden lovella molectensis: Millar, 1975 and C. mohecomsic. Tokioka and Nishikawa, 1976, which ate all assigned to the new species, Cherefina rohusin (see helow).

Slutter: (1895) deseription of this spectes includes a secord of its characteristically spherical brond pouch (present even before it is filled with embryos). and its transyersic mascles.

Clavelina nigran sp
(Fig. 16. Plate 4a)

D)

 Kecf, i8m, coll N, Coternan, AMPI 48, 6,.3.72. hosfotppe OM (94.f86).

DiscRITres

Colonics are irregular, consistang of thick hasal valons lixed to the substrate along their length. with upright branches containitg single zooush or groups branching from a common staik. Usually rooids are separate for most of their bougth attheugh this is variable and occasinnally only the

Fig. 16, Clavelina nigra n.sp. (holotype QM G9486): a, colony, b, zooid. Scales: a, 5 mm , b, 1 mm .
thoraces are separate. Separate zooids are up to 1 cm long. The large subterminal branchial siphon is turned ventrally and the narrow atrial siphon is directed upwards, both flaring out from the aperture. Living specimens are dark grey to black with a white rim around each aperture. Even in preservative the body wall is crowded with dark particles.

Internal. Structure: The largest zooids are barely 1 cm long and the thorax is slightly shorter than the abdomen. Thoracic muscle bands are transverse, with the formula $30 \mathrm{E}, 4 \mathrm{~B}, 2 \mathrm{D}$. Muscle bands are fine, forming an almost continuous coat over the thorax, but they disappear along the dorsal border and none were detected on the abdomen. Contraction of the thoracic muscles causes the thorax to elongate. Eight large branchial tentacles alternate with 8 smaller ones in a circle slightly anterior to them.

There are 19 rows each of about 50 stigmata. The oesophagus is interrupted by a small round prestomach about halfway along its length. A narrow oesophageal neck occupies half the length of the abdomen. The stomach is long, with a suture line, but no other folds or ridges. A long posterior stomach is present in the last quarter of the descending limb of the gut loop. The rectum extends the whole length of the abdomen and the smooth-bordered anus opens about halfway up the thorax. Gonads are present in the gut loop, but are not mature in this holotype colony.

Remarks: The present species is strikingly similar to C. moluccensis. Both have transverse thoracic muscles, a prestomach, and similar, rather irregular, colonies with zooids arising singly or in clumps from common basal test or stolons. At least the thoraces, and sometimes the whole zooids, are separate from one another. Generally, the zooids are not as robust as C. moluccensis, the muscle bands are finer forming a continuous coat over the thorax, and are especially numerous for such small zooids. The abdomen is longer than the thorax in the present species, while it is shorter in C. moluccensis, and the numbers of stigmata per row are about half of the number in C. moluccensis. The most compelling difference between the two species, however, is the colour. The present species does not have the characteristic pigment patches of C. moluccensis. it is not blue, it has a white band around the apertures, and dark pigment particles are crowded throughout the preserved specimens.

The colour resembles that of C. cyclus Tokioka and Nishikawa, 1975 (see Nishikawa and Tokioka 1976) from Okinawa 1. and the Philippines (QM GH475). However, the white band is around the
base of the branchial siphon in C. cyclus - not around its rim as in the present species; and the thoracic muscles of C. cyclus are not transverse.

As far as is known, the present species occurs only at Rottnest 1. It may be indigenous, with a range confined to Cockburn Sound.

Clavelina oliva n.sp.
(Fig. 17. Plate 4b)

Distribetion

Type Locality Western Australia (Shark Bay, Dirk Hartog I., Ransonnet Rocks, Cymadocea bed, coll. L Marsh 7.4.79, holotype WAM 983.83; Dampier Archipelago, Kendrew 1., $20^{\circ} 28^{\prime} 30^{\prime \prime} \mathrm{S} 116^{\circ} 32^{\circ} \mathrm{E}$, outer metre 8, coll. Western Ausiralian Museum Crown of Thorns Survey, paratypes WAM 217.75).

Furitier Records: Western Australia (Dampier Archipelago, WAM 213.7 thorax missing 1051.83: Houtman's Abrolhos, WAM 231.88). Queensland (Lindeman 1., QM GH4085; Liæard 1, QM GH4108). Northern Territory (Darwin. QM GH4211 GH 4800 1). Philippines (QM G12753 GH476 GH490 GH558).

Description

External Appearancr: Specimens available are usually solitary, upright, club-shaped zooids on a narrow stalk which is divided into root-like branches at its base. The specics is common (with Nephtheis fascicularis) in Darwin Harbour (at 13.5 m) with its long stalk embedded in the silt and only the thorax rising above the level of the sca floor. Spccimens have to be dug out of the substrate. The base of the stalk has often been severed. A colony with 4 zooids was collected from Lizard 1. (QM GH4108). Another specimen lot (WAM 217.75) has 3 zooids that were possibly joined by a basal stolon, which could have remained attached to the substrate when the specimens were collected. Collectors field notes and photographs of the specimens from the Philippines (M.E. Cowan) indicate that the species occurs either in small colonies with few zooids or as solitary individuals.

I'he separate zooids are from 2.5 to 5.0 cm long of which the thoracic, abdominal and posterior abdominal sections are each approximately onc third. The abdominal scction usually becomes progressively narrower with progressively firmer test toward the base, although sometimes the diameter decreases very abruptly to the narrow stalk at the posterior end of the abdomen. The thorax is about 8 mm in diameter, abdomen ahout 5 mm and narrow vascular stolon a maximum of only 2 mm in diameter becoming narrower toward the base.

The test on the stalk is usually quite hard. leathery and opaque, although in all the specimens
from Queensland it is firm and translucent, and sometimes is rather short. On the thorax the test is soft, flexible, and transparent. but not glassy.

In preservative the thorax is either transparent (specimens from Darwin), or dark blue, the colour fading toward the dorsal surface of the thorax and on the abdomen (specimens from Western Australia). Collectors notes and photographs of specimens from the Philippines indicate living specimens were dark (black?) with white, or yellow, or green bands around the siphons somctimes extending down the dorsal surface of the thorax and with speckles of the same colour on other parts of the thorax. In preservative some dark patches persist over the dorsal ganglion which extend around the base of the branchial siphon. However, in Darwin Harbour the populations of this species have a generally colourless thorax. The stalk and abdomen arc ycllow, and some yellow pigment extends up along the endostyle and around the apertures.

1ntirnal Sirucfure: The thorax is relatively large and roomy. The siphons are large, the branchial siphon curved ventrally and the atrial directed upwards. In addition to the usual endostylar, branchial and dorsal muscles, there are also conspicuous muscles from the atrial siphon extending down the dorsal surface. The muscle formula is 10E,5B,2D,4A. Endostylar muscles are spaced down the whole length of the endostyle. In contracted specimens muscles are seen to run transversely across the thorax, extending down the dorsal border of the thorax, onto the abdomen and along its length. In larger specimens 6 large branchial tentacles lie at the base of the branchial siphon, slightly anterior to them a circle of 12 of moderate length, and rudimentary tentacles are in the most anterior circle. However, in the small specimens from Lizard I. there is only a single circle of 9 rather short branchial tentacles. The opening of the neural gland is vertical, protruding slightly into the pharynx.

Stigmata and stigmatal rows both increase with body size, ranging from 11 to 22 rows of about 60 to 100 stigmata. When little contracted. the oesophageal neck occupies about half of the abdomen, the stomach heing about half way down the abdomen. There is no prestomach. The stomach is large and wide, and sometimes has folds in the preserved specimens, although these are probably artefacts. The gut loop behind the stomach is ohscured by gonads. The smoothrimmed bilabiate anus opens at the posterior end of the thorax. Embryos are present in the distal part of the oviduct across the right side of the

Fig 17. Clavelina oliva n.sp.: a, colony (QM GH4108); b, solitary individuals (QM GH4108. WAM 1051.83); c, whole $700 i d$ in test (holotype WAM 983.83); d, rooid removed from test (QM GH4108); e, larva (QM (iH4085). Scales; a,b, $5 \mathrm{~mm} ; \mathrm{c}, 2 \mathrm{~mm}$; d, 1 mm: e. 0.2 mm .
posterior end of the thorax in specimens collected in February from the Dampier Arehipelago (WAM 217.75), from Lindeman 1. collected in January (QM GH4085) and from Darwin collected in August (QM GH4211).

A mature larva present in the specimen from Queensland (QM GH4085) has a trunk of 0.8 mm to 1.0 mm . The tail is wound more than halfway around the trunk. Although otulith and ocellus are present in the cerebral vesicle, these are not in good condition and the pigment appears lost. A rather narrow frontal plate has angular ampullae at the base of each adhesive organ.
REMARES: The zooids of this species closely resemble those of Clavelina viola Tokioka and Nishikawa, 1976 from Sagami Bay, Japan. The bolotype of the Japanese species is a large colony of 164 zooids, and this constitutes its major distinction from the present species which never forms large colonies. As indicated by the occurrence of some small colonies in the Philippines and the presence of enlarged terminal ampullae in one specimen from Shark Bay (WAM 983.83), it does sometimes replicate zooids fron) the basal stolon. However. replication seems not prolific; or perhaps, as in C. miniara Watanabe and Tokioka, 1973, repliçates separate from one another.

The colour of the living zooids of Clavelina viola is recorded by Tokioka and Nishikawa (1976. p. 345)
thoras... Taintly purplish but darker near the posterior margin and in the siphonal area where a prominent deep purplish pigmentation is extending from the dorsal side of the atrial siphon onto each lateral side to embrace an area coloured yellow between both apertures.
Greater variation occurs in the colour pattern of C. aliva, with generally more yellow, white or green pigmentation in relation to the dark or purple areas. The inverted E-shaped dark patch over the dorsal ganglion that is considered a characteristic of C viola is not present in C. oliva. Although longitudinal museles from the atrial siphon have not been described for C. viola, they may have been overlooked and their presence in C. oliva does not necessarily constitute a difference between the species.

The characteristics that the zooids of C . viola share with the present species and that distinguish both from other species are: length of the zooids (3 104 cm); their general shape, progressively narrowing from the thorax to the thin basal part of the stalk; long vascular stolon; general characteristics of the muscle formula with a preponderance of oblique muscles; a relatively
short oesophageal neek and the long posterior expanded section of the abdomen with its large roomy stomach that collapses into folds in preserved material.

Clavelina aliva is distinguished from the solitary C. dagysa, an indigenous Western Australian species not recorded north of Cockburn Sound, by its size; its attenuating basal stalk (the stalk of C. dagysa expands basally), its long narrow vascular stolon (instead of the short vascular appendages of C. dagjsa in which the zooid extends almost to the base of the stalk); and its fewer muscles.

Clavelina ostrearium (Michaelsen, 1930)
(Fig. 18. Plate 4c)
Poddelavella astrearium Michaelsen. 1930, p. 467
Podocilavelta meridionalis: Kott, 1972b, p. 167.
Disitibumon
New Recoress. Western Australia (Albany, WAM 26,87). South Australia (Nuyts Archipelago, SAM E1473-4. QM GH2313; Pearson I. QM GH935; Gireat Austratian Bight, QM GH936 GH4222).

Previousty Recoriofor: Westerin Australia (Albany - Michaelsen 1930). South Australia (Pearson 1. S \triangle M E1992 Kotr 1972b).

The species occurs across the southern coast of Australia mainly in the Great Australian Bight but extending into Oyster Harbour, Alhany at its western Timits. It hats not been recorded inside Spencer of S t Vincent Gulfs, however, and its presently known castern limit is at Pearson 1.

Drsertruman

ExTERNAL Appearanke The species is solitary. Individuals are 6 to 1 lcm long, and consist of a spherical to oval balloon-like thoracic portion of glassy test enclosing a uniformly blue zooid. supported on a long firm, gelatinous stalk, wide in its upper part, and usually becoming leathery and tapering toward the base where it again expands into a tough conical hold fast or clubshaped, rounded base. The branchial aperture is terminal and the atrial aperture subterminal. Both apertures are on flaring siphons. The zooid extends right to the base of the stalk and the vascular stolon is very short. The expanded base contains the expanded posterior end of the abdomen.

Internal Strifture The most conspicuous features of the zooid are the large (about 2 cm long) roomy thorax and the long, thin oesophageal neck. Muscle bands of the thorax are Iongitudinal and ohlique, with the formula $20 \mathrm{E}, 10 \mathrm{~B}, 5 \mathrm{D}$. They extend along each side of the abdomen. At the base of the branchial siphon 20 fairly large stumpy tentacles are in 3 conceniric circles, with the larger tentacles in the posterior circle. The small tentacles

fice. 18. Cluwe inn astreariam: ahh, solitary indinduals (QM (iH23.13. SAM 1:1973): c. thorax showing muscles (S゙AM1E1973): d. larva (QN CH93f). Scales: a,t. 5 mm ; с. $2 \mathrm{~mm}_{\uparrow}^{2}$ d. 11.2 mm 。
in the anterior circle are on the underside of a distinet velum that projects into the base of the siphon. The duct of the neural gland projects slightly into the pharynx and has a vertical clliptical opening, sometimes curved into an are. There are 24 to 34 rows of at least 100 stigmata per row.

The long oesophagus extending through the greater part of the stalk ol the zooid. It is not interrupted by a prestomach. The anus, its horder divided into 20 rounded lohes, opens opposite the fourth last row of stigmata. The gut loop encloses the gonads. consisting of the usuil eentral ovary surrounded by pear-shaped mile [ollieles that spill over onto the side of the gus loop and obscure the long oval stomach and gut loop. Embryos develop in the distal part ol the oviduct and in the peribranchial cavity but there is no protruding brood pouch. Embryos are present in colonies collected in March (OM GH936).

Larvae are moderately largc, the almost spherical trunk being 1.25 mm long. The frontal plate is broad and supports the usual 3 large triradially arranged, almost sessile adhesive organs. The tail is long. winding the whole way around the trunk. Shepherd (see Kott 1972h) obsetved that new thorices regenerate on old persisting stalks. There is noevidence of vegettative replication in the examined material

Remarks. The species seems elose to Clavelina clagjsa, both being unitormly blue in lile. and solitary with large, roomy thoraces, long oesophageal necks, shorl vascular appendages, and a similar muscle formula with predominantly ohlique musctes. The stalk of C: dagersa usually is thicker and shorter, does not become as hard and leathery, and docs not cxpand into a conical holdlast. However, the most eompelling distinetion between the two species is seen in the larvare - C. osmearium has eharacteristic clavelinid adhesive organs while C. dagusa does not.

Michaclsen`s (1930) specimen from Oyster Harbour. Albany, is described as 11 cm long with a thin. leathery stalk. sharply cut off from the glassy thoracic portion which is about 2 cm long, and has a short vascular stolon. Thus it conforms with all the characteristics of the present species.

Kott (1972b) mistook specimens of this species for C. meridionalis, which is also a tall solitary species with a leathery stalk. The latter species however, has a longer, narrower thorad, a shorter oesophageal neck, a long vascular stolon, and is a different colout.

Clavelina pseudobaudinensis (Kott, 1976)

(Fig. 19. Plate 4d 1)
Oxporpria perudohaudinensis ǩott. 1976. p. 54.
Clovelina badinensix Kout. 1957a, p. $\$ 7$ (part. not specimens from Rotmesi with small larvac); 1972a, ९. 4. 1972b. p. 167. !Millar. 1966a. p. 363.

Sind duvellu lesson Caullery, 1900. p. 1419.
? Simelavelda australis Caullery, 1900, p. 1420.
Distrisiction
New Recokbe Westerre Australiz \{Ifoutman's Abrolhos. WAM 370.80: Cockhurn Sound. WAM 745.83). Snuth Australia (Spencer Gull. QMI (iH4399 GH4401 2; St Vincent Gulf, QM G10118; Kangaroo 1. QM G11992). Victoria (Port Phillip Bas: QM G9484 GH301. New South Wales (Idervis Bay, QM Gl0091: Wreck Bay, AM Y200I). Lord Howe I., (QM GH4375),
Provions y Reconmed Western Australia (Romest
AM Y1112 paratypes C. butalinemsis Kott. 1957a). South Australia (Great Australian Bight - SAM E1977 Kott 1972b: St Vincent Gulf SAM F.1975 F1976 Kol! 1972a). Victoria (Port Phillip Bay Millar 1966a: Western Porr Bay AM Ylll3 holotype. AM Y1122 paratypes Kot! 1976).

Fic. 19. Clarelina pseudohustinensis. a, colony (SAM E1977): b, rooid (QM Gill992): c. (horay (WAM 745.83): d. various views of the stomach $1 Q M$ GH4072), e, larva (holotype ΛM Y 1113). Seales: $\mathbf{a}, 5 \mathrm{~mm}$; b, c , Imm; d. $0.25 \mathrm{~mm} ;$ e. 0.2 mm .

The species has a wide range in temperate waters from Houtman's Abrolhos in Western Australia to Jervis Bay in New South Wales.

Description

External Appearance: Colonies are mushroom-shaped, with a thick stalk and an almost spherical expanded head. The test is glassy and transparent on the upper surface where the zooids open. The stalk is firm, but not leathery. It is sometimes relatively long and narrow (up to 3 cm long but less than 0.5 cm diameter) with a head of 2 cm diameter (AM Y1112 from Rottnest and QM G11992 from Kangaroo I.) However, more often the stalk is short, wide, sometimes bulhous and almost the same dimensions as the head. Zooids are almost completely embedded in the test, only their anterior ends projecting separately from the upper surface. The living specimens are transparent or grey with small white spots on the test and two conspicious blue pigment patches on the anterior end of each zooid - one a transverse arc between the siphons and the other a longitudinal patch over the anterior end of the endostyle. In darker specimens a horseshoeshaped patch of white can be seen around the cerebral ganglion. The transverse arc of blue colour sometimes becomes either a large oval patch or separates out into 3 separate patches in the preserved specimens. There is also a small transverse patch of blue over the anus.

Blood vessels extend parallel to one another up toward the top of the stalk where they end blindly. Although vegetative buds were not observed it is possible that they develop here as they do in the genus Nephtheis.

1nternal Structure: Even partially relaxed zooids are not more than 1 cm long, the thorax, the oesophageal neck and the posterior expanded part of the abdomen each being about one third of the total length.

Oblique and longitudinal muscle bands on the thorax have the formula $6 \mathrm{E}, 3 \mathrm{~B}, 0 \mathrm{D}, 3 \mathrm{~A}$. Sometimes muscle bands appear more numerous (up to $10 \mathrm{E}, 6 \mathrm{~B}, 5 \mathrm{~A}$) when the thorax is not so strongly contracted and the separate bundles of fibres in each band separate from one another (see WAM 745.83. QM GH30). Branches from the adjacent branchial and atrial muscles extend across the inter-siphonal dorsal line. Muscles continue along the ventral side of the abdomen, and in many of the contracted zooids examined the abdomen is drawn up into a thick trunk behind the thorax (AM Y1112), or is folded up against the posterior end of the thorax, completely obscuring the oesophageal neck. Branchial tentacles are in 3
concentric circles, 6 large tentacles, at the base of the siphon, 12 moderately sized ones slightly anterior, and 12 small ones in front. The long, narrow, vertical opening of the neural gland projects into the pharynx.

There are 18 to 20 rows of 30 to 40 stigmata. Dorsal languets taper to a long, narrow point. The oesophagus is long and narrow in relaxed zooids, and there is no prestomach. The relativley short stomach is rectangular in outline, but apart from the suture line it has no structural ridges. Its mesial surface projects out at each side to embrace the intestine which it lies against. A long oval posterior stomach lies at the posterior end of the descending limb of the gut loop. The anus, bordcred by rounded lobes, opens near the posterior end of the atrial cavity.

Embryos begin their development in the distal end of the oviduct, which forms a brood pouch, curving around from the oesophageal neck across the posterior end of the right side of the thorax. They complete development in the atrial cavity on the right side. Embryos are present in colonies collected from Rottnest I. in November (AM Y1112). In South Australian specimens collected in September (QM G10118) there are embryos developing in the brood pouch and atrial cavity. although tailed larvae are not present. Embryos and tailed larvae are present in the holotype colonies and in the specimen from Lord Howe 1. (QM GH4375) collected in October. Specimens collected in March, April, June from South Australia and Victoria do not contain developing embryos. Apparently there is a single breeding season at the beginning of summer for this temperate species.

Larvae are large, the larval trunk 0.9 cm long, with the tail wound five-sixths of the distance around it. The three triradially arranged stalked adhesive organs are supported on a frontal plate with small lobes produced from it to alternate with the adhesive organs. Each adhcsive organ has a cup of modified ectodermal cells around the central axial cone. In one specimen (QM GH4375) the rows of stigmata in the larvae are actively subdividing and there are about 6 rather irregular rows.

Remarks: Some colonies of this species (AM Y1112, QM G11992) closely resemble those of Clavelina baudinersis, having a fairly long and relatively narrow stalk. However, more often the stalk is short, wide and sometimes massive and bulbous. The zooids constitute a reliable means of distinguishing the species, for, while C. baudinensis never has oblique muscles, C. pseudobaudinensis has at lcast 5, extending from
the anterior half of the endostyle. Also, the oesophageal neck of C pseudobaudinensis is shorter, about the same length as the posteriot expanded part of the abdomen, while in C, baudinensis it is two-thirds of the length of the nibdomen. Living specimens can be distinguished by the transverse are of blue pigment between the siphons. Further, C. pseudobaudinensis has a typically clavelinid larya, while the larvac of C, baudinensis are small and their adhesive apparatus is unique - not being known for any other species.

Clavelina pseudobaudinensis has a wide range in Australian temperate waters, while C. baudinensis is apparently confined to Cockburn Sound.

The two specimens referred $t 0$ by Caullery (1900), on which he based the definition of the genus Synclavella, could be either the present species or C, baudinensis, However, since neither of the French expeditions which collected specimens, the Coquille and the Astrolabe respectively, visited Western Australian waters. Caullery's species are probably synonyms of C. pseudobaudinensis.

Possibly the species most closely resembling C. pseudabaudinensis is C. australis which, although they are not embedded completely has large zooids, similat larvae, incubatory pouch and white spots in the test.

Clavelina robusta $\mathrm{n} . \mathrm{sp}$.

(Fig, 20). Plate 4g)
Podoclavella meridionalis: Pizon, 1908, p. 197.
Podoctavella moluccensis: 2Van Name, 1918, p. 130 (part). Hastings 1931, p. 82. 2Millar, 1975, p. 211.
Clavelina maluccersis: Tokioka, 1967a, p. 104. Tokiokut and Nishikaws, 1976, p. 347.

Disitrimution
Tyme, Locnlity. Western Austratia (Houtman's Abrolhos, Goss Passage, Beacon, Wallabi Group. $20-$ 30 mL coll. WA Museum party. 11.4.78, holotype WAM 753.83 QM (G1F2140; paratype WAM 755.83).

Further Recomos: Western Australia (Broome, WAM 751.83. QM GH2139: Exmouth Gulf. QM Gll934; Shark Bay. WAM 754.83; Houtman's Abrothos, WAM 374.80 230.88). Queensland (Lizard L.. QM GH4073). Northern Tertitory (Pant Essington, QM GH4074). Philippines (QM G12757).

Pravomisir Rforden Queensland (Low Is AM 013503 Hastings 1931). Palau Is (Tokioka 1967a). Indonesia (Pizon 1908). Philippines (?Van Name 1918. Millar 1975), Japan (Iokioka and Nishikawa 1976).

The species has at tropical western Pacific range.

Description:

External Apmakance: Colonies are large. with largerooids, dark blue in preseryative clearly seen through the whitish translucent test. In some
zooids from which the colour is fading the blue pigment spreads around the sides from the dorsal surface and extends in a band along each side of the endostyle. It encloses a light coloured area over the anterior end of the zooid, and a dark patch down the dorsal surface of the branchial siphon. Collector's notes and photographs of Philippine specimens (QM GI2757, coll. M.E. Cowan) indicate that living specimens were black with fluorescent green rings around the siphons, the ring around the branchial siphon being a wide band interrupted over the dorsal tubercle, while the ring around the atrial siphon is a narrow band around the rim of the aperture,

The basal part of the test is gelatinous and very firm, as is the test in the abdominal region. The test over the thoraces is softer and more transparent, but never glassy. Zooids are separate for varying parts of their length - sometimes the abdomen or some part of it is embedded in common test, ot shares a stalk with another zooid. or olten the whole zooid is entirely separate. The basal test often forms a massive or irregular saik for the colony. Colonies are often solid, the zooid stalks adhering to one another.

Internal Sfructlire: Zooids are large, 2 cm to 4 cm long with the thorax and posterior end of the abdomen about 0.5 cm wide in fairly relaxed zooids. However, strong longitudinal muscles extend along the length of the thorax and abdomen and zooids are often strangly contracted. The postcrior expanded part of the abdomen, containing the stomach and gonads, is about one quarter of the length of the more relaxed zooids. The remainder of the length is equally shared by the thorax and the oesophageal neck. Thoracic museles are conspicuous and strong, with formula 8E,3B,3D. When contracted, muscles from the right side of the thorax swing around onto the venitral part of the oesophageal neck and then onto the left side of the posterior part of the abdomen. Muscles from the left side of the thorax curve dorsally and on to the right side of the abdomen. There are four large branchial tentacles in an ouler circle and anterior to these, an irregular arrangement of more numerous middle-sized and smaller tentacles. The opening of the neural gland is a vertical slit on a large fleshy cushion. There are 18 to 22 cows of 60 to 80 stigmata.

The ocsophagus lacks a prestomach. The stomach is relatively narrow and pear-shaped. sometimes, but not always, with one or 2 ridges in the internal lining each side of the suture line. Conads are in the gut loop. The ovary has particularly large eggs. Embryos are crowded. more or less in 3 rows in the upper half of the

Fig. 20. Clavelina mobsta n.sp.: a, colony (holotype WAM 753.83): b, relaxed rooid (holatype QM GH2140): c,d, contracted zooids. From left and right respectively (QM Gil934); ef. zooids showing gonads and brooding embryos (QM GHy074. holotype QM GH2140); g, larva (paratype WAM 755.83). Scales: a-f, 2mm, g, 0, 2 mm ,
oesophagcal neck where the oviduct is expanded to form a brood pouch, wherc embryos begin their development, continuing it first in the distal cnd of the oviduct across the posterior end of the thorax and then free in the peribranchial cavity.

Larvae arc large, the larval trunk being 1.3 mm long. The tail is short, barely reaching the anterior end of the trunk. The 3 adhesive organs are well developed, with a relatively deep cup of ectodermal cells around the axial cone. The ventral stalk supporting the frontal plate is long, with small rounded ampullae alternating with the hases of the adhesive organs.

Embryos are present in colonies from Western Australia and the Northern Territory collected in September (QM Gl1934, GH4074) and from Western Australia in April (WAM 753-5.83).

Remarks: The size of the zooids and colony, the long narrow oesophageal neck, and the muscle formula of this species arc similar to Clavelina australis. The latter species can be distinguished by its median pigment patches, the absence of brooding emhryos from the upper part of the oesophageal neck, as well as by its much smaller larvae with a relatively long tail. Certain aspects of the zooids and colonies resemble C. elegans which, however, has fewer oblique muscle bands and more longitudinal ones than does C. robusta.

The colour of the living specimens from the Philippines (QM G12757) closely resembles that of Clavelina viola. The latter species appears (from its photographs) similarly dark, with white, ycllow or green spread over the thorax in specklcs. In the present species this colour is confined to sharp bands around the siphons. Also Clavelina robusta zooids are more robust.

Clavelina moluccensis: Tokioka, 1967a and Podoclavella moluccensis: Millar, 1975 appear specimens of Clavelina rohusta n.sp., having similar colonies. large zooids with a long oesophageal neck, a similar muscle formula, large larvae with small ampullae on the frontal plate, and a short tail. The branchial tentacles and dorsal tubercle of C. robusia are identical with thosc figured by Tokioka (1967a, lig. 35d). Further. the light area around the siphons in prescrved specimens from Western Australia (WAM 755.83) is that part of the zooid which Tokioka descrihes as having been a very bright yellow colour in life. Clavelina moluccensis: Tokioka and Nishikawa, 1976 also appear specimens of C. robusta having, in addition to the other characters listed ahove, cmbryos in the upper abdominal part of the oviduct and purple pigment persisting in the anterior part of preserved 200 ids.

Genus Nephtheis Gould, 1856

Type species: Oxycorynia fascicularis Drasche, 1882

A monotypic genus of Clavelinidae with completely cmbedded zooids in a conical, fleshy, stalked head. The thick stalk contains a unique three-dimensional vascular network. Replicate zooids form in the terminal ampullac of this network. Unlike other Clavelinidae the terminal ampullae protrude from the vascular network at the top of the stalk just below the zooid-bearing part, rather than being distant from the zooids at the base of the stalk; and the ampullate do not separate from the vascular network prior to the development of the replicates.

There are no divisions of the gut postcrior to the stomach although a prestomach is formed halfway down the oesophagus. The hranchial tentacles are in a single circle on the edge of a narrow velum, and are not numerous. Larvae have the characteristic Clavelina lorm, being large with triradially arranged adhesive organs consisting of an axial cone of columnar cells surrounded hy a collar ol enlarged epidermal cells on a stalked frontal plate.

Nephtheis appears close to Clavelina. Zooids of N. fascicularis have muscles conlined to the thorax as in C. cyindrica, as well as having the same short gut loop, prestomach, and long colony with zooids around the periphery of a central axial stalk (although in C. cylindrica the zooids are not completely embedded as they are in the present genus). Further, although the nephtheid meshwork vascular cylinder is not present in the genus Clavelina. in C. pseudlobaudinensis the blood vessels do extend parallel to one another up the length of the stalk and terminate at the top as they do in the present genus. The principal distinctions hetween Nepluheis and Clavelina are the vascular network, and the single circle ol branchial tentacles. Gonads of Nephtheis are smaller than those of Clavelina. Although testis follicles are larger, they arc confined to the gut loop and are more or less in a circle around the ovary rather than spread around the outside of the gut as in Clavelina.

Nephtheis fascicularis (Drasche, 1882)
(Fig. 21. Plate 5a-c)
Nepluheis (?) Gould, 1856, p. 16.
Oxprorvia fascicularis Drasche, 1882, p. 175. Millar, 1963a, p. 717. Nishikawa, 1984, p. 116. Monniot, 1988, p. 205.

Neptheis fascicularis: Tokioka, 1952, p. 100; 1970, p. 85. Millar. 1975, p. 209.

Colella ihomsom Herdman, 1886, p. y4.
Nephthes thomsond. Sluiter. 1909. E. 36. Hattmeyef. 1919, p= 121
Nephthes thompsomi: Van Name, 1918, p. 144.
Neptahos malavensis Slinter, 1909. p. 36.
Nephtheis farfformis Sluiter. 1919. p. 39.

Distrabely mod

Nisw Rexomas. Western Australia (Broome. QM (99258 , WAM 866.83868 .83 882.83). Queensland (Martha Ridgeway Reef, QM GH280 Gll2093). Philippines (QM ©12756 (iH465 GH499). Nowhern Territory (Darwin Harbour). Ausiralian coast (SAM f2037),

Privoust i Rreabtoros. Western Arstralia (Northwestern coust Millar 1963a). Aralura Sea (Tgkiokia 1952). New Caledonia (Monniot 1988), Ponape 1. (Nisbikawa 1984). Philippines and the Sulu Sea (Gould 1856. Van Name 1918. Tokioka 1970. Millar 1975). Garoline is (Drasche 1882) Indonesia (Herdman 1886. Sluiter 1909).

DIECRHTION

Extermal. Appearance. Colonies have firm Shick stalks. up $t 03.5 \mathrm{~cm}$ in diameter and 20 cm long. although usually the stalk is in the vicinity bt 2103 cm lang. Sometimes many stalks are joined hy common basal test, from which additional stalks arise. The diameter of the stalk qually decreases loward the zooid-bearing head. The heads are ptogressively spherical, conical. and long (up $t a / 6 c^{\circ}$) and eylindrical, the head lengthening as zooids are added from around the periphery of the vascular network at the top of the stalk. The largest specimen of the newly recorded material (WAM 866.83) is rope-like with a head 16 cm long and the stalk 14 cm . As ring after ring of zooids develop from the top of the stalk, the vascular network expands behind them. tilling the centre of the head with an axis that is a continuation of the stalk, and that supports the lengthentig thead of the colony. Thus a conical to cylindrical head consists of an outer layer of zooids, their abdomina projecting inwards toward the vascular network of the eentral axis. Each zooid maintaitus its connection with the vascular network through its posterior abdominal stolon. Smaller heads consist of hemispheres to cones of zooids over the top of the stalk. their vascular stolons projecting down to join the vascular network that, at this stage, is confined to the stalk.

Several headless stalks are available from Rocbuck Bay (QM G9258). These narrow to a point at theit terminal free end. New zooids are developing around the narrowing free ends, the largest zooids at the top and the smallest further toward the wider base. These appear regenerating colonies in which the zooids bave either regressed or have been lost through mechanical damage,

It the newly recorded material, long cylindrical and conical heads are Irom Roebuck Bay, Broome, while the specimens from the Great Barrier Reef and the Phillippines are all shorter, spherical, oval or small cones.

The stalks are firm, although the vascular network confers on them a spongy texture. There is only a thin layer of test in the zooid layer of the head and it is exceptionally soft.

Internal. Structure: Zooids lic in the colony with their ventral sides toward the outside and the base. The branchial apertures are turned ventrally and open below the atrial apertures. Both apertures are smooth. Zooids are about 1 cm long, the thorax longer than the abdomen. Thoracic musculature, with formula $24 \mathrm{E}, 4 \mathrm{~B}, 4 \mathrm{D}, 3 \mathrm{~A}$, consists of relatively short transverse and oblique bands extending across each side from the atrial siphon, the branchial siphon and the endostyle, and attenuating over the dorsal and posterior borders of the thorax. Muscles do not extend onto the abdomen. There are only 8 branchial tentacles, produced from the edge of a narrow velum. 'The apening of the neural duct is a simple oval opening.

Newly recorded colonies have from 12 to 14 rows of stigmata. Zooids at the top of the large heads from Roebuck Bay have 14 rows and those at the base of the same head have 12 rows of stigmata. Smaller colonies from Martha Ridgeway Reef have 13 rows in rooids at the top and 12 in those at the bottom of the heads. About 30 stigmata are in each row. The gut loop is short A small rounded prestomach lies halfway down the oesophagus. and a rounded stomach, with a suture line but no other structural folds or ridges, is about halfway down the abdomen. No uther structures differentiate any part of the gut, which contipues as a plain cylindrical tube extending from the end of the stomach to the anus, (about halfway up the thorax), Gonads are confined to the pole of the gut loop posterior to the stomach. The central ovary, containing up to 8 large eggs, is surrounded by relatively large testis follicles. A small incipient brood pouch occurs at the postero-dorsal corner of the thorax.

Neither embryos nor larvae were present in the newly recorded specimens which were collected in May. July and Qctober. Tokioka(1952) records up to 6 embryos in the brood pouch in specimens from the Arafura Sea in October. Larvac are large. The trunk 1 mm Jong and deeper than long. The 3 adhesive organs are of the usual clavelinid type with a collar of cefls around the central cone, and they are iriradially arranged on a frontal plate (sec Tokioka 1952).

Rimarks In the newly recorded material the

Fro. 21, Nephtheis foscicularis: a.b, colonies (QM G112093 G12756); cocolony shoning top of stalk with vascular reticulum (OM GH2093), d, zunid (QM G9258). Seales: uth, 5 mm , c, 2mm; d. 1 mm.
large colonies with the stalk continuing up through the head to form a central axis are all from Roebuck Bay, Broome and there were no small colonies without the vascular network continuing up into the centre of the head recorded from that location. Van Name (1918) reported long colonies from the Philippines, up to mearly 20 cm total length, that he likened to 'elongated pine cones' (Van Namc 1918, p. 144). Although he does not mention the vascular network extending into the head it is probable that it does.

Colour also varies in some colonies. The western Australian ones are translucent (both living and in preservative). All other colonies in the newly recorded material are opaque blue, and this colour persists in the preserved specimens which have a conspicuous vascular network in the body wall that is not conspicuous in the colonies from Broome. However. Van Name observed similar colour variations in his Philippine material. It is likely that the variations in the extent to which the vascular network of the stalk penetrates the head, and in the intensity of pigmentation are, respectively, due to age and intraspecific variation, rather than genetic differenees associated with an indigenous Roebuck Bay species isolated from populations in the Arafura Sea and to the north.

Roebuck Bay colonies Iound at the extreme low tide level, when exposed, continually drip water (pers. comm. N. Colcman).

Herdman (1899) believed these Roebuck Bay populations (see Saville Kent 1897) to be Colella claviformis Herdman, 1899 (< Euclavella n.gen. claviformis). Kott (1957a) suggested they could be Sigillina cyanea. However, in both cases similarities are only superficial and there are differences in the colonies as well as in the zooids. Both Herdman's and Kott's guesses were based on the similar general shape of the colony which consists of a strong, firm common stalk that raises the rooid-bearing head off the substrate. This colony type is found in other species of Holozoidae and also in the Polycitoridae and the Polyclinidae. and appears to be convergent

The similarity of the colony and the zooids of this specics to those of Clavelina cylindrica has been referred to above. The short zooid with short thoracic muscles and short gut loop that is found in C. erlindrica and Nephtheis fascicularis may be a convergent adaptation associated with the stalked rope-like colony with a layer of zooids surrounding a central axial stalk. However the presence of the prestomach and Clavelina-type larva suggests a phylogenetic relationship as well.

Family PYCNOCLAVELLIDAE new family

The family accommodates Prenoclavella Garstang, 1891 and the new monotypic genus Euclavella, both containing species formerly in Clavelinidae.

The new family is characterised by its relatively small but thread-like zooids divided into thorax and abdomen, smooth apertures, no internal longitudinal branchial vessels, a long oesophageal neck, smooth stomach at the posterior end of the abdomen, and a posterior stomach in the pole of the gut loop rather than (as in Clavelinidae) in the descending limb. The anus opens at the base of the atrial cavity (unlike the Clavelinidae or Diazonidae where it opens some distance up the branchial sac). A vascular stolon contains a mesodermal septum. Gonads are reduced in size, the testis consisting of a compact group of follicles or (in one species) a single follicle. Only in Euclarella n. gen. do they spread out over the outside of the gut as they do in Clavelinidae. The ovary is always small, containing no more than about 6 eggs. Eggs are fertilised at the base of the oviduct and develop as they move anteriorly. The principal character separating the new family from Clavelinidae is the unique larva with 2 or 3 long, tubular adhesive organs invaginated into the anterior half of the larval trunk. They are placed one above the other in the anterior midline when 2 are present, but when 3 they retain the primitive triradial arrangement. Prior to settlement, or when pressure is applied to the trunk of the mature larva, these tubes evert, projecting out in the lront of the larval trunk with the group of adhesive cells formerly at the base of the tube now on the tip of the everted organs. Larvae of many species of Pycnoclavellidae are also unusual in lacking an otolith in the cerebral vesicle. However, this is not universal throughout the family, and its absence may be a secondary adaptation, associated with the long sticky adhesive organs (Trason 1963).

Trason (1963) demonstrated similar tubular adhesive organs in larvae of P. stanleyi Berrill and Abbott, 1949 as those reported for larvae of other species known at that time, viz. P. aurilucens Garstang, 1891 from the English Channel (see Berrill 1947a) and P. mimuta Millar, 1953b from Africa. Larvae are now known for all subsequently described species of Pychoclavella, except P. kottae (Millar, 1960) and P. aurautia n.sp., and they all have these unique adhesive organs, as do the larvae of Euclavella n. gen. They appear unrelated to the stalked adhesive organs commonly found in Clavelina spp., which consist of
a cone ol columnar cells surrounded by a collar or cup of epidermal cells. The long, invaginated epidermal tubes of the Pyenoclavellidae could have evolved only from a simple, sessile. noneverting cionid-type adhesive organ.

Berrill (1947a) placed Pychoclavella in Clavelinidae, assuming the vascular stolon with its terminal enlargement and mesodermal septum was an indication of a similar method ol replication to that in Clavelina spp. However, Trason (1963) showed replication in Pycnuclavella was different from that in Clavelinidae. She maintained, with Pycnoclavella included. Clavelinidae was an artificial assemblage' (Trason I963 p. 323). Trason (Ioc: cit.) demonstrated, in Pronoclavella stanteyi Berrill and Ahbott, 1949, that although the regenerating pooid remains connected to the stolonic vessel with its terminal expansion, it originates from horizontal division across the abdomen of the parent zooid: and the regenerative process involves epicardial tissue as in many other aplousobranch ascidians (but not in Clavelinidae).

Replication of Euclavella has not been investigated. The relationship between Euclavella and Pyenoclavella is, at this stage, based entirely on larval form.

Larvae of species of both Clavelinidae and Pycnoclavellidae are large, a characteristic of viviparous larvac of colonial specics (sce Annotated Glossary, above; and Kott 1985). Consequently, these families have a long evolutionary history as colonial organisms. However, at this stage, there is no indication of a relationship between the two forms of replication producing colonies in Clavelinidae and Pyenoclavellidac respectively; and therefore nothing to indicate if replication had evolved in a common cionid-like ancestor before either of these extant families separated from it. In fact, only the possession of smooth-rimmed apertures - a character that otherwise occurs only in some rooids of the Stolidobranchia simplified as a result of size reduction (e.g. in Polyzoinae) suggests a common ancestor. Pyenoclavellid genera are distinguished from Euhterdmania (Polyclinidae), which has similar larvae, and in which fertilisation is at the base of the oviduct. by the clavelinidlike characters of the zooids (smooth-rimmed apertures, smooth stomach walls and absence ol ${ }^{\circ}$ a posterior abdomen).

In addition to the unusual larval ad hesive organs and probably the process of replication, the large pigmented orange or green cells that so often predominate in both zooids and larvae are also characteristic of this family. In larvae these cells are usually present in the test, and they subse-
quently amass in the tip of the vascular process, and apparently colour adult zooids. Neither Berrill (1950) nor Trason (1963) believed they were the same as cells that Trason (1963 p. 311) observed 'moving in the circulatory system throughout the animal . . . and that are seen in great numbers in the abdomen of the oozooid before budding occurs:
Though records are few, possibly because colonies are cryptic and usually not intertidal, Pyonoclavella, found in Atlantic and Pacific oceans, and in tropical as well as temperate waters is especially well represented in Australian waters. Euclavella is known by only one species recorded from the coast of New South Wales and the North Island ol New Zealand.

Gcnus Pycnoclavella Garstang, 1891
Type species: Pycnoclavella aurilucens: Garstang. 1891
The genus contains colonial species with relatively small, partially embedded. or almost separate zooids. with a short thorax and long narrow abdomen. Eggs are fertilised in the base of the oviduct and continue their development as they pass up it to the atrial cavity. Larvac are characteristic of the new family, Pyenoclavellidae. having 3, or sometimes only 2, long, tubular, eversible adhesive organs, The otolith is often, hut not always, absent from the larval cerehral vesicle (see P. aurilucens. P. stanlerio as well as P. minuta. P. (letorta and P. elongata n. sp.). However, a small otolith is present with the ocellus in P. arenosa, P. dimimuta and P. tahella n.sp. Larvac of some Pyenoclavella spp. (P. arenosa. P. stanlest, P. antilucens and P. mimuta) often (but not always) have the epidermis at the anterior end ol the trunk thrown up into longitudinal ridges (relerred to as ampullae) and furrows (that form pockets) around the adhesive organs.

Pychoclavella is distinguished from Euclavella by smaller zooids, fertilisation of eggs in the base of the oviduct and partially separate $700 i d s$.

Probably Arcliascidia is a synonym ol Pychoclavella. Deflection of the dorsal ends of the anterior and posterior rows of stigmata along the mid-dorsal line, described below for all P1rnockavella except P. elongata n. sp., has been noted for Archiascidia neapolitana Julin, 1904 from the Mediterranean (see Brien 1948). Brien believed it a neotenous condition. However, the presence of dorsal langucts associated with these deflections of stigmata suggest an cvolutionary reduction in size of the branchial sac rather than a persisting embryological condition. It occurs in other small
TABLE 2. Summary of Charactfrs of the Species of Pycnoclavella Recorded from Australia

Species	${ }^{1}$ Biogeographic description	${ }^{2}$ Range around Australia	Colony Organisation	Colour (living)	Thoraces (orientation to long axis of zooid)	Stigmata (number of rows)	Male follicles	Larval trunk (length, mm)	Adhesive organs; otolith
P. detorta	IWP,tr	Heron I. Geographe Bay	zooids upright, separate; branching basal stalks	yellow-green translucent	90°	6	several, short	1.7	3; small
P. aurantia n .sp.	A,te	Nuyts Arch.	"	orange opaque	"	8	numerous, long	?	?
P. elongata $\mathrm{n} . \mathrm{sp}$.	A,te	Nuyts Arch.	"	"	in line	14	?	1.0	3; none
P. diminuta	WP, tr-te	Darwin-Lizard I.	"	white, yellow, blue, or brown; transparent or opaque	"	3	several, short	1.75	2; small
P. tabella n.sp.	A,te	Spencer GulfPortsea	"	white translucent, yellow stalk	"	3	one	0.8	2; small
P. arenosa n .sp.	A,te	Investigator and Bass Straits	abdomina embedded in axial common stalk; thoraces separate	yellow opaque	$"$	6	?	0.7	2; small

${ }^{1}$ A, indigenous; WP, western Pacific; IWP, Indo-West Pacific; tr, tropical; te, temperate. ${ }^{2}$ Range given anticlockwise around the continent.
(rcduced) zooids, viz. Eudistoma and Cystodytes (Polycitoridae) with 3 and 4 rows of stigmata. respectively. It probably is convergent rather than indicative of a phylogenetic relationship between Pyenoclavellidae and Polycitoridae.

The genus can be conveniently separated into 3 groups of species, based on colony form:

1. Aurilucens group contains P. aurihucens from the English Channel, P. minuta from tropical western Africa, and P. arenosa. with a common basal test mass in which the posterior ends of zooids are embedded. These species contain large pigmented morula cells in the larval test. Pycnoclavella aurilucens and P. arenosa, have. respectively, green and yellow larvae and adults. The colour of P. minuta is not known. Larvae have longitudinal ridges ('ampullae') at the anterior end of the trunk and adhesivc organs are not as deeply invaginated as in other groups.
2. Stanleyi group contains P. stanleyi from California, P. diminuta, P. tabella n.sp. and P. elongata n.sp., with basal stolons but no common mass of test. These species also contain pigmented cells in the larval test, and both larvae and adults are orange in all except some specimens of P. diminuta - which have blue, white, or brown adult thoraces. Longitudinal furrows at the anterior end of the larval trunk have been detected only in P. stanleyi. Adhesive organs are always deeply invaginated.
3. Detorta group contains P. detorta, P. Kottae from New Zealand. and P.aurania n.sp. with thoraces turned through 90° Both P. detorta and P. aurantia have orange pigment, although the colour of P. kotlae is not known. The larva is known only for P. detoria. It has 3 long adhesive organs and the oozooid is better developed than usual with the gut loop differentiated, longitudinal thoracic museles and 6 rows of stigmata.
Pycnoclavella is diverse in Australian waters. Although zooids are small, colonies are striking when alive. Consequently they have been photographed frequently by SCUBA divers. Pycnoclavella detorta and P. diminuta are tropical species. while all others are temperate, possibly isolated from tropical ancestors, e.g. Pycnoclavella aurantia n.sp. is clearly related to P. detorta: and P. tabella n.sp. to P. dimimuta and both pairs probably arc sister species.

Key to the Species of Pycnoclalella Recorded from Australia

1. Thoraces turned through 90°, the atrial
aperture terminal 2
Thoraces not turned through 90°, the branchial aperture terminal .3
2. Stigmata in 6 rows P. detorta Stigmata in 8 rows P. aurantia n.sp.
3. Stigmata in 3 rows . 4

Stigmata in >3 rows 5
4. Zooids thread-like, with less than 20 stigmata per row.. P. tabella n.sp.
Zooids not thread-like, with more than 20 stigmata per row P. climinuta
5. Abdomina cmbedded in a branching axial stalk: stigmata in 6 rows P. arenosa
Abdomina not embedded in a branching axial stalk; stigmata in >6 rows. .P. clongata n.sp.

The only confirmed species known from the western Pacific and not yet recorded from Australia is Pvenoclavella kottae Millar, 1960, from the North 1., New Zealand, distinguished from P. detorta and P. aurania n.sp. by its more numcrous (13 to 27) rows of stigmata.

Pycnoclavella arenosa (Kott, 1972)
(Fig. 22. Plate 5d)
Oxvcorinia arenosa Kolt, 1972b, p. 167.
Disiributhos
Nfw Records: Victoria (Bass Sirait, QM (iH4226 (H 4360).

PrFvionsia Rucrmind Sourh Australia (Investigator Strait - MV H 168 holotype, MV H169 paratype Kott 1972b).

Description

External Appearance: Zooids are arranged around cylindrical and irregularly branching central common stalks 1.0 to 1.75 cm in diameter and up to 9 cm long. The outer layer of test, through which pass the oesophageal necks of the zooids, is sandy. Separate thoraces of the zooids project out beyond the sand along the length of the branching common stalks. The thoracic test is free of sand and transparent. The central test of the stalk, inside the sand, is soft, transparent, and contains abdomina of zooids and their long vascular stolons. In preservative morula blood cclls in the zooids (especially crowded in the branchial sac) are dark and can be seen through the outer coat of sand. The layer of test around zooids contains circular brown plates resembling the spherical bodies in the test of Pycnoclavella diminula, but more crowded.

Colour photographs of the newly recorded specimen from Erith 1., Bass Strait, show the thoraces as yellow, but in preservative thcy are purple-brown.

Intirnal Structime: The zooids are less than 1 cm long, the abdomen up to 4 times the length of the thorax. Apertures are smooth-rimmed. Twelve broad longitudinal musele bands, with the formula 3E,6B,3D on the thorax extend onto the abdomen.

There are 6 rows of 20 reetangular stigmata and the dorsal ends of the anterior and posterior rows turn anteriorly and posteriorly, respectively, to extend along each side of the mid-dorsal line. The smooth, almost spherieal stomach is in the posterior end of the abdomen and an oval posterior stomach is in the polc of the gut loop. In all examined specimens the body wall around the posterior end of the gut loop, and the space enclosed by it, are crowded with the trophozooite eells characteristie of a vegetative condition.

Up to 8 embryos line up in the oviduet in zooids from the newly recorded colony Irom Bass Strait, which was eollected in May. Larvae are relatively small (trunk 0.7 mm long). The tail is wound threequarters of the way around the trunk. Just before larval release it is curved up across the left side of the anterior end of the trunk. Internal structure is diffieult to diseern beeause of the dark blood corpuseles in the larval test and haemocoelie cavity. There is a large ocellus and a small otolith. Two inverted, tubular adhesive organs at the anterior end of the trunk are not as large as in other species of the genus. At the anterior end the trunk epidermis folds to form 8 long furrows making ridges around the adhesive organs (referred to as ampullae by Berrill and Abbott 1949, and Trason 1963). The furrows arc filled with the dark morula cells. There are 2 rows of large stigmata.

Remarks: Colonies of this species are reminiseent of Clavelina cylindrica, with zooids projecting out from cylindrical axial stalks. However, in C. cy/indrica the whole zooid projects while in P. arenosa it is only the thoraces that do. Further, both larvae and zooids of this species share eertain characters with other Pyenoclavella that distinguish them from Clavelina. They are smaller, have relatively longer abdomina, fewer and shorter rows of stigmata with the anterior and posterior rows defleeted along the mid-dorsal line, the stomach at the posterior end of abdomen, and the posterior stomach in the pole of the gut loop. Larvae are unusual, possessing an otolith and shorter adhesive organs than usual. The species is distinguished from others recorded from Australian waters by its colony form and blood cells that appear dark in preservative.

Prchoclavella aurilucens, Garstang, 1891 (? < Clavelina nana Lahille, 1890; see Berrill 1950) from

Fig. 22, Plchoclavella arenosa: a, colony (holotype, MV H168); b, 700id (paratype MV H169); c larva (QM GH 4226). Scales: a, 5 mm ; b, 1 mm ; c, 0.1 mm .
the English Channel and P. minuta Millar. 1953b from Africa have colonies similar to those of the present species, with the posterior ends of the zooids embedded in eommon basal test and at least the thorax protruding from it, rather than
being joined by basal connecting stalks as in P. diminuta and related species. However, this basal test is olive green and the tadpole larvae contain green pigment, sometimes being uniform green (Clavelina nana). In the larval test and adult zooids of P. arenosa the morula cells that are purplish brown in preservative are probably yellow in lifc. They may be homologues of orange cells described by Trason (1963) in the larval test of P. stanleyi where they have the same distribution as in P. arenosa. In P. arenosa the cells in the adult circulatory system presumably confer the colour on the zooids in the same way as its orange cells affect the adult zooids of P. stanleyi (see Trason 1963).

Pycnoclavella aurantia n.sp.

(Fig. 23a. Plate 5e)
Distribution
Type l.ocally: South Australia (Franklin I., Nuyts Archipelago. 15 m , breaking reef. coll. N. Holmes, Iocation C. February 1983, holotype QM GH2295).

Description

External. Appearance: Colonies consist of clumps of balloon-like heads supported on long, thin, straight stalks arising from a mass of common basal test up to 5 mm thick. "The-balloon-like head is the thorax of the zooid, and the stalk is the oesophageal neck, the lower half to one-third of the abdomen being embedded in the basal test. The free part of the zooids is up to 1 cm long. of which the head is from one-quarter to onethird. In life the expanded head is wider than longer. However, the thorax is turned through 90° on the top of the stalk (as in Pycnoclavella detorta) so that the branchial siphon is on one side and the atrial aperture is terminal. Thus the width of the head is actually the length of the thorax. Living specimens have uniformly orange stalks and heads.

Interval. Structure: The body wall is delicate and transparent. The ventral border of the zooid curves down toward the top of the stalk, and continues around the posterior end of the pharynx to the oesophageal opening in the position usually occupied by the retropharyngeal groove. Longitudinal and oblique muscle bands have the formula: 5E, 3B,3D. Oblique muscle bands run from the anterior half of the endostyle. In some contracted thoraces oblique muscles are reduced to 3. Longitudinal muscles and the most anterior of the oblique ones extend onto the dorsal surface of the abdomen and continue along it in a broad band. Four more posterior, oblique muscle bands, having crossed the posterior end of the pharynx with the oesophageal end of the endostyle running
along it. form a band extending along the ventral surface of the abdomen.

About 16 long, curved branchial tentacles, with about-the same number of smaller tentacles encircle the base of the branchial siphon. However, these were difficult to count, and rudimentary tentacles were not detected. The neural gland opening is a simple, circular aperture projecting into the pharynx.

There are 8 rows of about 50 stigmata. However, the anterior and posterior rows of stigmata are longer and extend along the mid-line where they add to the area of the branchial sac, forcing it out to form dorsal pockets or pouches on each side of the dorsal lamina. Bands of unperforated pharynx are both anterior and posterior to the perforated area. The oesophagus is long, extending along the right side of the rectum down to the stomach in the posterior end of the abdomen. Gonads are in the gut loop posterior to the stomach. They consist of a small group of up to 5 ova in the middle of a mass of relatively long, pyriform follicles. The testis follicles are mature in the holotype, hut the ova are not. Larvac of this species are not known.

Remarks: The species differs from Pycnoclavella detorta in its having more rows of stigmata. slightly fewer muscle bands, and uniformly orange living colonies (instead of the irideseent green and gold of the tropical species). It is probable that P.aurantia is a sister species of the more widely distributed tropical P.detorta.

Pycnoclavella detorta (Sluiter, 1904)
(Fig. 23b-e. Plate 5n)
Podoclavella deroria Sluiter, 1904, p. 6. Kott, 1957b, p. 130 .

Clavelina detorıa: Van Name, 1918, p. 133. Millar, 1975. p. 209. Monniot 1988, p. 202.

Distribution
New Records. Western Australia (Cockburn Sound, WAM 792.83; Geographe Bay, 13.84). Queensland (Heron I., QM GH4079; Wistari Reef, QM G9488 Gll897. Philippines (QM GH527 GH529 GH532).

Prfvionisly Ricorided: New Caledonia (Monniot 1988). Indonesia (Sluiter 1904), Philippines (Van Name 1918; Millar 1975). Red Sea (Kott 1957h).

The species appears to have a wide range in the tropical western Pacific from the Philippines and south to the Capricorn Group in the Great Barrier Reef, and on the western Australian coast even further south to Geographe Bay. It has been taken down to 40 m .

Description

External. Appearance: Colonies consist of large clumps of separate zooids up to 3 cm long arising from common basal test. The test over

Fig. 23, fyenorlavella aurantia n.sp.: a, zooid (holotype QM GH2295). Pvonotarella delorta: b. colony (QM G11897): c, zooid (QM G11897); d.e, larvae, one with a tubular adhesive organ everted (QM G9488). Scales: a-c, 2 mm ; d.e. 0.5 mm .
thoracic parts of zooids is delicate and in life this is inflated and balloon-like. The test becomes firmer over the long narrow abdominal stalk. The branchial sac is bent over through 90° so the atrial cavity and aperture are terminal, the branchial aperture on one side, and the lower end of the endostyle and the retropharyngeal groove with the
ocsophagus and the rectum running alongside are on the other side of the stalked head. The terminal free end of the zooid has the dorsal lamina across it and the oesophagus opening at its dorsal edge.

In preservative zooids are colourless, but in life have greenish irridescent patehes around the branchial aperture and over the dorsal ganglion.
a wide patch of orange acposs the dorsal surface behind the hase of the branchat siphom, and intense orange in the endostyle and in the whole "I the abdomen.

Interval Strbicteri The unusuaborichtation uf the thorax is readily observed in hiving zoods orwing to the tright orange of endostyle and sectum. The thorax oceupies only abour onecighth of the total length of the rooid. the greater part being the long oesophageal neck. The stomach is at the posterior end of the body. The rooid extends almost to the basal stolon, one or two short vascular stolons lie at the posterior end of the abdumen.

The body wall is delieate Conspicuous muscle bands. with the lormula SE. 4 B.3.3. cxtend from the hranchial siphon, the intersiphonal midiline. and the anterion hall of the endostyle to the other side of the thorax (postcriorly positioned in these cooids). Musele hands Irom the intersiphonal space and the branchial siphon (longitudinal muscles) cross the pesterior end of the pharyms where the endostyle continucs to the oesophagus in the position usually occupied by the retropharyugeal groove. Muscles thent turn down to run alony the dorsal side of the sbdomen in a band with some of the oblique muscles from the anterior and of the codostyle. The more posterior oblique muscles eross the posterior half of the endostyle (the endostyle curving down into the stalh in a deep are or Vi and then extend into a broad band runniug down the ventral side of the abdomen. tine circular bands encircle each aperture. Branchial tentacles are slender, in 3 circles. the most posterion one with the 6 longest alternating with 6 of moderate length, and about twice the number of rudimentary tentacles in the anterior circle. The neural gland opening is a simple uransverse oval or kidney-shape.

There are 6 rows of stigmata with about 24 in a middle ror. Although the endostyle is hent down in a deep are and the dorsal lamina is straight across the anterior end of the zooid. the anterior and postermer rows of stigmata are not shorter than the middle rows, the shorter distance between cach enet of the endostyle and the dorsal lamina boing compensated for thy the dellection of the dorsal :angmata along the mid-line dorsal to the areas of unperforated pharyns anterior and posterior to the perforated area. This creates pouches that project up on each side of the dorsal lamina at the dorsal ends of the anterior and posterior tows of stigmata. The gesophagus is long and narrow, extending down to a shield-shaped stomath near the posterior end of the ahdomen The stomach has a suture line but no structural
ridges or folds. Gonads, consisting of rather large Pyriform mate follictes and a group of 5 or 6 small ava, lit in the gut loop behind the stomach.

Embryos complate their development in the atrial cancity at the wh ol the free end of the zersid. where up to 4 large tailed embryos can be found at a time, all at different stayen of development. Embryos are present in colonics from Wistari Recf in Augunt.

Larvac are large, the trunk 1.7 mm with a broad tail that cucireles shout three-quarters of the circumference ol the trunk. The anterior hall of the trunk is penerrated by 3 long tubula invaginations of larval epidermis with the group of adhesive cells in the base of the tube. When these adhesive organs evert the front of the touk becomes thattened. Before release of larvae these organs will evert if slight pressure is appliced to the trunk, even in the preserved materiad. An acellus but no otatith oncors in the certhral vesicke. The larsal test lacks the datkly pigmented morula cells fornd in P. diminuta, P. vahella nasp and P. arenesa. There are five rows of short stigmata in the branchias sate.

Remarks. Pychoctavella aurunia in.sp. from Somth Australia and P. Kottue Millar lion the Norih Istand. New Zealand, appear close relatives of thix topical species. Both have sepatate zooids with the branctial sacturned through an angle of 90°. huwever both have more rows of stigmata - P, auramia has 8 and P. Rotmo has Irom 1 ? 1027.

Although developing: embryos have wot been obsersed in the oviduct of the newly recorded material, Van Narme (19188. 134) tepurted them to be present in the 'proximal part of the abdomen" as well as in the atrial cetvity. Certainly in the present collectuon emhryos in ite atrial civnly atre all tailed tarvae. which have already have undergone a period of desclopment. It is muse likely that thas began an the base of the oviduct.

The horn-like projections of the test reported by Millar (1975) were not ohserved in any of the preselus specimens. not even those recarded from the Philippines.

Pyenoclavella diminuts (Koht. 1957)

(Fig. 24. Plate fial 1)
Glavedina dumintura Kott. 1957a. P. 89.
 19726. f. 170 fristl, "wil wall necimen from Tipara Reer- Fir mon lavella tahella n.sp.) Clavelita sterduta kints. 1972b, p. 16ti. Archidistema richera Munnion, 1488. p. 199. Archudistama ruthripuntum Momniun, 199k. p. 2 Uus.

Fis 24, Pycnotlavella diminua: a,b, colonics (QM GH1194 GH1302): c,d, pooids (QM GH4183 (il0162); e, abdomen showing testis (QM G10162): f, portion of hranchial sac showing posterior row of stigmata extending posteriorly alongside mid-dorsal line (QM GH324); g. larva (QM GH4083). Scales: a.b. 5mm; e-e, 1 mm , fig. 0.5 mm .

Distethotmov
New Recomps: Westeres Australia (Exmouth Gult. QM GH4083 GH4084; Shark Bay, WAM746,83982.83: Houtman's Abrolhus, WAM 372.80; Rotnest I., QM GH4089). South Australia (Great Australian Bight. GH1283 GHI 302 (iH2293 GH2389). New South Wales (Lord Howe I., QM GH53 (iH4373 GH4377), Queensland (Heron 1., QM GHP4081 GH4089; Lizard I., QM G10162 G11994 GH324 (iH3117). Northern Territory (Darwin, QM GH4293). Philippines (QM GH457-8 GH442 (iH534 (iH545-8 GH4109 GH41 12-3 GH4118).

Previousty Recorgebs; Westery Australia (Cape Boileas Millar 1963a; Rottnest I. - AM Y11935 Kotl 19578). South Ausralia (Great Australian Bight, Spencer Gulf. St Vineent Gulf SAM E2038 Kott (972b) New Caledonia (E Monniot 1988).

The species is known from 51020 m , usualty in caves and under ledges. It is apparently at Iropical westero Pacific form extending around the Australian coast. The collection of anly a single small colony from Heron I. is surprising in view of the intersity of collectome that has taken place at that location.

Description

Eximbenal Amparance Living colonies consist of a mass of spherical heads, about 5 mm in diameter, on harrow straight stalks up to 2 cm long that arise from a basal common mass of test. The test on the stalks is gelatinous but rather firm and almost opaque, while that on the head is glassy. soft and usually mutilated in the preserved specimens. In preservative the stalks are wrinkled and thicker than in life with brown oily-looking vesicles scattered through the test. These vesicles, of various sizes, the largest in the internal test algainst the body wall of the zooid, have not been seen in the living colonies, which are variously referred to as "light globe", "blue-pod', "vellow-pod", "brown-pod' and 'white-bead"ascidians, indicating is wide colour diversity. This is toot associated with the geographic location of the populations sampled and does not reflect morphological differences. In the Philippines, collector's notes refer to colonies as white orange, purple and blackish with whire markings. There are both brown and blue colonies from Exmouth Gulf; South Australian colonies have white heads with yellow stalks or are uniformly yellow; and the Lizard I. specimens are deep blue. The colour of the single small colony collected from Heron 1. is not known. The pink colour noted in a small colony from Darwin (QM GH4293) may have been caused by the masses of nauplius larvae of a parasitic copepod.

The head contains the thorax of the zooid, in life expanded into the characteristic spherical shape. The long, narrow abdomen occupies the stalk and usually extends into the basal test mass.

Intirmal Structurf The body wall is delicate, with distinct muscle bands with formulae $5 \mathrm{E}, 3 \mathrm{~B}, 3 \mathrm{D}$ (both blue and brown colonies from Exmouth Gulf); 7E, 7B,3D (Lizard 1.), 4E,4B,4D (Heron 1); 9E, IIB,6D (Great Australian Bight), The number of muscle bands increases with size and robustness of zooids - specimens from South Australia being more robust than most others. Muscles extend along the abdomen toits posterior end. Branchial tentacles are in concentric circles. 6 larger tentacles posteriorly alternating with 2 smaller tentacles, Rudimentary tentacles were not observed, although there is a circle of flat projections of the body wall in the position where they are usually found. The neural gland opening is a simple, circular aperture projecting slightly into the lumen of the pharyns. A tongue-like flap projects posteriorly along the mid-line behind the prepharyngeal groove.

There are 3 rows of 40 to 60 stigmata - the count being done in the middle row - and an expanse of anperforated pharyngeal wall both anterior and posterior to the perforated region. The posterior row of stigmata on each side continues posteriorly along the dorsal lamina into the inperforated part of the pharynx, and the branchial sac projects out on each side of the dorsal lamina in this region. About 20 extra stigmata are added to the posterior row in this way. Four dorsal languets lie across the dorsal sinus - one each between the first and second, and the second and third rows of stigmata, and 2 close togetter on the posterior part of the dorsal sinus where the extra stigmata are located. The oesophagus is long, extending, alongside the rectum, to the posterior end of the abdomen where the smoothwalled, almost spherical stomach occurs. Internally the stomach sometimes, but not always, has some fine lomgitudinal ridges. A short, relatively narrow innestine curves afound in the posterior end of the abomen and opens inte the rectum. There is a bilabiate anus at the posterior end of the atrial cavity. Gonads consist of a small bunch of pyriform testis follicles in the posterior end of the gut loop. Two of 3 embryos are found in the byiduct, although no more than a single egg has been found in association with the testis follicles in the loop of the gut. Fggs are fertilised at the base of the oviduct and continue their development as they pass up it, being found at progressively later stages of development.

Embryos were found in Lizard I. colonies collected in November (QM GH10162), but not in January, April or July; there were no larvae in Shark Bay colonies in Apnil; South Australian colonies had no larvaie in March or April in 2
successive years. Apparently the breeding season is restricted to late spring and zooids do not produce many eggs - the ones they do produce are large. The larval trunk is 1.75 mm long. The tail, which is particularly broad, just reaches the anterior end of the trunk and its tip curves around in the mid-line over the apertures of the 2 invaginated tubes of the adhesive organs. There is an ocellus and a minute otolith. Crowded, darkly pigmented morila cells lie in the larval test of both trunk and tail, and, at the anterior ends of the trunk, circular groups of cells appear identical with the vesicles in the adult test. There are 2 rows of stigmata.

Remarks: The species is conspicuous owing to its brilliant colours. It is surprising that it has not previously been recorded from the tropical western Pacific - possibly its spherical thoraces have been mistaken for mollusc eggs. It is characterised by its 3 wide rows of stigmata, the recurved posterior row (which also occurs in P. detorta and P. aurantia), the oily-looking vesicles in the test of the stalk, and the large larva. An otolith is unusual in Pycnoclavella. One occurs in P. tabella n.sp., a closely related species which has similar inclusions in the test of the stalk. However a small otolith as well as the ocellus occurs also in P. arenosa n .sp. which is in a different species group from the present species. This suggests that the loss of the otolith is an intrageneric convergent adaptation that occurs in parallel within the genus.

Specimens assigned to new species in the genus Archidistoma by Monniot (1988), have all the characteristics of Pycnoclavella, including the larvae, viz. small otolith, 2 adhesive organs, long larval trunk, and position of the anus at the posterior end of the atrial cavity. They appear synonyms of the present species.

Pycnoclavella elongata n.sp.

(Fig. 25. Plate 6g)
Distribution
Type Locality: South Australia (Franklin I., Nuyts Archipelago, just offshore N of West $I ., 8-10 \mathrm{~m}$, rock outcrops and some sand patches, coll. W. Zeidler, P. Aerfeldı et al., 22.2.83, holotype SAM E1980; Franklin i., Nuyts Archipelago, on rock amongst breaking reef, 15 m coll. N. Holmes, paratypes QM GH4082. SAM E1981).

Description

External Appearance; The colonies consist of clumps of elongate heads each on a narrow straight stalk joined by basal stolons that tangle and adhere to one another. Heads are about 1 cm long and 4 to 5 mm at their widest (halfway along) and they narrow toward the stalk at their anterior
ends. Stalks of preserved colonies are about 8 mm long, but are wrinkled and probably are larger in life. The test over the head is soft and flexible, but firmer on the stalk. Both head and stalk of living colonies are uniformly opaque orange. Sometimes the lower half of the stalk and the basal test are invested with sand. Apertures are close together, on opposite sides of the narrow free end of the zooid, and are turned away from one another.

Internal Structure: Zooids are between one and 2 cm long, of which the thorax is one-quarter to one-third of the total length. The thoracic muscles are strong with formula $10 \mathrm{E}, 3 \mathrm{~B}, 4 \mathrm{~A}$. They extend down along the abdomen. Six long, branchial tentacles alternate with 2 moderately sized ones in an anterior circle. A circle of minute flat projections of the body wall anterior to these 2 circles of tentacles may be rudimentary tentacles. The simple, circular neural gland opening projects slightly into the pharynx.

There are 14 rows of stigmata with about 30 stigmata per row. The last row of stigmata is not curved posteriorly along the dorsal lamina as it is for many other species of this genus with a more reduced thorax. The oesophagus is long, extending to the smooth, round stomach at the posterior end of the abdomen. Male follicles were not detected. They may have matured before the ova.

Up to 10 large embryos in a developmental sequence are present in a single line up the oviduct. toward the thorax. The larval trunk is about 1 mm long. Larvae have the usual 3 long, tubular adhesive organs, triradially arranged, projecting back into the trunk from the anterior end. An ocellus, but no otolith, is in the cerebral vesicle. A few dark morula cells occur in the larval test of the trunk, and none in the test of the tail.

REmARKS: The branchial sac is particularly long and narrow for this genus, and the species can be distinguished by its unusually numerous rows of stigmata, with anterior and posterior rows not extended along the dorsal mid-line. The colour of the living zooids resembles that of Pycnoclavella aurantia n.sp., which, as well as having a different body shape and number of rows of stigmata, has differently oriented thoraces - the present species having both apertures terminal while in P. aurantia they are at right angles to one another, the branchial aperture on onc side and the atrial terminal.

The species is possibly most closely related to P. diminuta and P, tabella n.sp., having a similar colony, but is distinguished from them by its longer thorax, the lack of vesicles in the test, and the crowded morula cells in the larval test.

Fici 25. Pyenoclavella elongasa n.sp.: a colony (holotype SAM 1:1980); bo single fooid isolated from colony (paratype SAM El981): e, zooid removed from test showing incubating embryos (holotype SAM E1980): d, thorax showing museles (holotype SAM F1980); e. gut loop (holotype SAM F1980): f, larva (holotype SAM E1980). Scales: a,b, 5 mm ; c. 2.5 mm ; d,e, $1 \mathrm{~mm}: \mathbf{f}, 0.2 \mathrm{~mm}$.

Pyenoclavella tabella n.sp.

(Fig. 26. Plate 6h)
Pycnoclavella diminua: Kott 1972b. p. 170 (part, small specimens from Tipara Reen.

Distriburion
Type Localty. Victoria (Portsea, on reef, 1.8 m , coll. N. Coleman, 4.6.77 holotype QM Gl0161). South Australia (Tipara Reef. Spencer Gulf, Ilm, coll. Shepherd, 24.9.71, paratypes QM G9257. SAM E1982)

Description

External Applarance: Colonies consist of masses of thin, upright sandy stalks (1.5 cm high) from which the soft sand-free thoracic parts of the pooids protrude. The sandy stalks, all the same height, have fine hair-like extensions of the test to which sand adheres, and by which they adhere to one another to form a sandy mass that, in life. is covered with the crowded white spherical bead-

Fic. 26, Pycnoclavella tabella, n.sp. (QM G10161): a, colony; b,c, zooids; d, posterior end of gut loop showing testis between descending and ascending limbs; e, abdomen with gut loop removed showing testis, ovary and incubating embryos in oviduct; f, testis divided into 2 lobes; g, larva. Scales: a, 5 mm ; b, c,e, 1 mm ; $\mathbf{d}, 0.5 \mathrm{~mm}$; f. $0.1 \mathrm{~mm} ; \mathrm{g} .0 .2 \mathrm{~mm}$.
like expanded thoraces. Basally, the sandy stalks taper into fine stolons which connect zooids to one another and have side branches that fix them in the substrate. Beneath the adherent sand the test of the stalk is slightly firmer than that of the thorax, and has brown vesicles scattered through it as in P. diminuta.

Internal. Structure: The zooids themselves
are thread-like, up to lcm long, with long vascular stolons that extend into the base of the stalk. The thorax is only about one-tenth of the length of the abdomen. The body wall is delicate with conspicuous longitudinal and oblique muscle bands with formula 3E,3B,2D. Muscles continuc along the length of the abdomen. Apertures are close together on the free anterior end of the thorax

There are 3 rows of up to 20 stigmata in the small, narrow thorax. An expanse of unperforated pharynx exists anterior and posterior to the stigmata, with the first and third rows turned, respectively, anteriorly and posteriorly along the dorsal mid-line. The long oesophagus opens into the small, spherieal stomach in the posterior end of the abdomen. The testis is in the loop of the gut posterior to the stomach. It is a single, flat, sometimes bilobed, follicle narrowing anteriorly to the vas deferens. It is visible on the left side of the gut loop. In both specimen lots examined a series of up to 7 developing embryos occur in the oviduct, progressively better developed as they pass up the oesophageal neck to the thorax. Eggs are produced one at a time. Fcrtilisation apparently occurs just anterior to the stomach, wherc short intervals of duct hetween the proximal 4 eggs stain blue in haematoxylin indicating that sperm are present. In view of the narrow diameter of the oviduct which the large, developing embryos completely fill, sperm must he present toward the base of the oviduet before ovulation begins, and must persist there to fertilize the eggs as they are produced. Oviduct and vas defcrens are closely associated for the whole of their length.

Larvae are relatively large, with a trunk 0.8 mm long and with the broad tail wound almost all the way around the trunk. They have 2 inverted tubular adhesive organs at the anterior end of the trunk, in the median line. There is a large ocellus and a minute otolith. The larval test has hrownish pigment spots that probahly develop into the spherical bodies found in the adult test. The species appear more prolific than most others in the genus. Embryos are present in hoth June and September, and are more numerous than in other species.

Rimarks: The species is related to Pyenorlavella dimimuta, both species having only 2 adhesive organs in the larva, a larval otolith, a terminal branchial aperture, and the same brown vesicles in the test of the stalk. However, the present specics is much smaller and less robust than P. diminita, has fewer stigmata per row, fewer muscle bands, a sandy coat on the stalks, and a single, lobed testis follicle. The otolith, like that of P. diminuta, is minute and was overlooked by Kott (1972b), as was the fact that there were only 2 , rather than 3 adhesive organs. The same anterior and posterior extensions of the first and third rows of stigmata along the dorsal mid-line are present as in most species of the genus.

Dumus areniferus, a species of the Euherdmaniinae, has similar colonies formed by the close adherence of small, upright, thread-like 7ooids, each in its own covering of sand-invested test.

Genus Euclavella n.gen.

Type species: Colella daviformis Herdman, 1899.
The genus contains a single species. It has a fleshy, stalked colony with completely embedded Clavelina-like rooids regularly arranged and opening to the surface all around the rounded to oval head. Vascular stolons with a mesodermal septum project down into the thick, tleshy stalk. The branchial tentacles are in 3 concentrie circles as in Clavelina. Larvac have the tuhulat. invaginated adhesive organs of the family Pyenoelavellidae. There is a well developed ocellus in the cerebral vesicle, but no otolith. There are similar larvae with tubular adhesive organs and no otolith in Pycnoclavella spp. and the Euherdmaniinae. The closest phylogenetic relationship for the genus appears to be with Pyenoclavella. from which it is separated by its embedded zooids and the presence of a brood pouch in which fertilisation takes place. It is also distinguished from Pichoclavella by the firm, opaque test in which the rooids arc embedded, instead of the layer of soft transparent test that covers the thoraces of the zooids ol Nephtheis and Clavelina as well as Pyonoclarella. The test of the whole zooid hearing head of the present genus is firm and the form is maintained in preservative irrespective of the condition of the zooids embedded in it.

The only known species of this genus is recorded from New Zealand and New South Wales.

Euclavella elaviformis (Herdman, 1899)

(Fig. 27. Plate 7a c)
Colella claviformis Herdman, 1899, p.67.
Clavelina claviformis: Kot1, 1957a, p. 88. Millar, 1960. p.68; 1982, p. 12.

Amaroturimn anomahum Herdman, 1899, p. 76.
Clavelina sigillaria Michaelsen, 1924, p. 269.
Disirinulion
Niu Rrenros New South Wales (Jersis Bay. AM Y2138: Port llacking, AM Y2143: Port Jackson, AM Y2131: Port Stephens, QM G10152). New Zealand (Bay ol lslands. QM G10155).
 Jackson AM U241 U151 G12248 syntypes Herdman 1899. AM U353 holotype A. anomalum Herdman, 1899. AM Y1254 Kolt 1957a; II mile S by E Ballina AM U577). New Zealand (North Island ZMC holotype Michaelsen 1924; Millar 1960, 1982)

The species has been recorded from 15 m down to 60 m (1 M U 577).

Discription

Exilrnal Appiarancf. Colonies have a rounded to oval head up to 6 cm long supported on a short, thick stalk that sometimes expands

Fig. 27. Euclavella claviformis n.gen.: a, colony (QM Gl0152); b,c, zooids from right and dorsum respectively, muscles partly removed (QM G10152); d. Iarva (AM Y1254). Scales; a, 1 cm ; b,c, 1 mm ; d, 0.2 mm .
basally to a wide and almost leathery holdfast. Otherwise the test is firm and gelatinous throughout, but firmer on the stalk than on the head. Several stalks may be joined basally. The stalk expands where it joins the head. Vascular stolons from the zooids extend down into the base of the stalk. The zooids are embedded in the head, opening all around its surface, the branchial apertures anterior to the atrial openings. Living colonies are yellow-green (AM Y2143) or opaque white with orange zooids, the colour of the zooids being apparent where their apertures project slightly from the surface.

Internal Structurl; Zooids are always very contracted, especially the abdomina, and their true dimensions have not been determined. Probably they are more than twice the length of most of the preserved zooids, which are never more than about 6 mm . Thoracic muscles are widely spaced oblique and longitudinal bands, with formula

3E, 3B,3D. However, on the abdomen they are much more numerous, completely surrounding it and obscuring the other organs. There are 3 circles of tentacles, 6 large ones in the most posterior circle; about twice the number, moderately sized. anterior to the larger ones, and in the most anterior circle a variable number of rudimentary tentacles. The neural duct opening is a small transverse oval, projecting slightly into the lumen of the pharynx.

There are 10 rows of about 40 stigmata. The stomach is about halfway down the abdomen. It probably is smooth in the living specimens, although when preserved it is collapsed into folds, apparently artefacts. The gut is no further differentiated after it leaves the stomach. It passes forward to the bilabiate anus at the posterior end of the atrial cavity as a cylindrical tube. Gonads are present in the gut loop posterior to the stomach and consist of a group of 3 or 4 small eggs surrounded by fairly numerous testis follicles which extend out over the left side of the abdomen. Up to 8 developing embryos are in a brood pouch at the postero-dorsal corner of the thorax where they appear to begin their development. They are present in colonies collected off the NSW coast (AM Y2138 Y2143) in May and June.

Larvae are large, the trunk about 1.2 mm , and the tail is short, only about half the length of the trunk, although the test covering it, forming the fin, is longer (see Remarks, below). There is an ocellus but no otolith in the cerebral vesicle. No frontal plate develops, the anterior end of the trunk is unmodified except for 3 triradially arranged, tubular, adhesive organs invaginated into the body of the larva, with adhesive cells at the base of each tube. These become terminal when the tubes evert and project out in front of the larva. The bases of the inverted tubes converge in the centre of the trunk, near the developing oesophageal region.

Remarks: Despite the wide geographic separation between the New Zealand populations and those on the central eastern coast of Australia, the only difference found in either colonies, or zooids or larvae is that the New Zealand specimens have a longer larval tail than the Australian ones. At this stage, without further differences separating them, they are considered conspecific. The colonies appear closer to Clavelina than to any other known genus, but they are readily distinguished by the firm test of the head in which the zooids are embedded, by the strong abdominal musculature of the zooids, and by the remarkable adhesive organs of the larvae, which were completely misinterpreted when the material was examined initially (Kott 1957a).

Family HOLOZO1DAE Berrill, 1950

Colonies are soft and fleshy, either with a thick stalk or forming sessile cushions or sheets. Zooids are completely embedded, and arranged in colonial systems which, with the exception of Sigillina and Polydistoma n.gen.. are highly organised cloaeal systems. Branchial openings are 6 -lobed. Atrial apertures are either 6 -lobed of large, plain-rimmed openings with an ankerior lip, Thoraces are short, usually with 3 or 4 rows of stigmata, but occasionally with 5 or 6 . Longitudinal thoracie muscles are present, but they do not always exrend onto the abdomen. Oblique and transverse muscles are not always present. The gut loop is relatively short, the oesophageal neek is never long, and with few exceptions the stomach is balfway down the abdomen rather than at the posterior end as in Clavelinidae, Pyonoclavellidae and Polycitoridae. The amus opens some distance up the branchial sac. Posterior vascular processes of the zooids extend down into the stalk (when present) or into the centre or base of the colony. They do not branch, and each has either an ectodermal or an endodermal (epicardial) rather than mesodermal septum. The posterior abdominal stolon is short and inconspicuons only in the relatively thim, investing colonies of Sigilina faniasiana.

Gonads are contained either in the gut loop. or in a posterior abdominal sac connected to the zooid by a narrow neck, or they spill over behind the gut loop into the top of the vascular stolon. In many species large, pyriform testis follicles are arranged in grape-like clusters, but in certain Sjcozoa and Distaplia only 4 to 6 long follicles are arranged parallel to one another to form a barrel-shaped mass with the short vasa efferentia joining the vas deferens at one end. The ovary is relatively small, producing few, but large eggs. In a few species (certain Hypodistoma and Polydistama m.gen. and Distaplia relinaculata n.sp.) unusually large eggs are probably fertilised at the base of the oviduct and rupture into the test (where the embryos complete their development) directly from the abdomien. In all other known species eggs are fertilised and embryos incubate in a brood pouch formed from a loop of the distal patt of the oviduet which projects from the postero-dorsal corner of the thorax. Larvae are large. In all genera except Sigillina and Hypodistoma adhesive organs are stitadially arranged, 2 dorsal and one ventral, at the anterior end of the trunk, They consist of a relatively deep epidermal cup surrounding a deep axial cone with a hyaline cap (see Cluney 1977). In Sigilliza and

Hypodistuma there ate 2 or 3 , more complex compound adhesive organs in the median linc, In Sigillina mjobergi the adhesive organs are inverted tubes, as in the Pynoclavellidae and Euherdmania.

Replication is by horizontal division of isolated vegetative stolons which contain a lubular septum that is epicardial in origin. It is a prolifie process. and the small, non-functional teplicates can be seen moving up from the top of the stalk or base of the colony to take their places as functional coobids at the surface. Blastozodids also form lrom the epicardial tube in the oesophageal region in larvate of Hypsistozoa (see Brewin 1959). Distaptia and some Sycozoa.

The structure of the vascular appendages and the process of replication in Sycozoa has been investigated by Caultery (1909), Beneden and Selys Longchamps (1913) and Salfi (1925a, 1926): and in Distapliu by Kowalevsky (1874), Salensky (1893), Salfi (1925b, 1928, 1933) and Bertil (1935b, 1948b), Brien (1948) summarised theit lindings. In all cases, there is an ectodermal vascular process, usually consisting of two channels, that projects posteriorly from the left side of the posierior end of the abdomen In Distaphia there are numerous short vegetative stolons (stulons proliferes: Brien 1948), containing a part of the left epicardial sac, These become isolated from the zooid at the posterior end of the abdomen near the vascular process but independent of it. In Sycozoa, long vegetative stolons, that occupy the stalk of the colony, divide progressively from their anterior to posterior ends in a prolific replicative process. These stolons contain an epithelial tube that Brien (1948) thought epicardial although Caullery (1909) was not sure of its origin. Berrill (1935b) identified. in Distaplia magnilarva, is further replacative process in which the remnants of the anterior tips of the epicardial tubes generate buds following resorption of the zooids. It is a process more or less fomologous with the replicative process if the larvaes

Sigillina and Hypodistoma differ markedly from Sycuzua and Distaplia, in having a siagle posterior abdominal process. I ike the vegetative stolon of Speozoa it contains an epicardial sac (Caullery 1909; Sigillina grandissima, below). Atihough the vegetative process of Sigillina has not been investigated, this posteriot abdominal process provides the site for a process of replication similar to that known for Sycozoa (see Caullery 1909). Colonies of all the stalked species of Sigillina examined in the present study have replicated foods being added to the colony at the top of the stalk, and, in some cases, isolated
buels are present in the stalk lhis nomble to compatila wht the prodections al eplacates by horimond division of the isolated vegetative vtalosn. as is characteristic of Syenousa and besmplita. thas confirming Cinullery's (190) abacrvations un Sigillina australis.

As a resull of has whervaltons. Cobllery (lore. (ii,) believed Sigilltua member of the same fanily (1)istomidat (itarsh, 1872 - Polycilorialac Michaclsen. (1904) as Siceozors and lisumpla. Mishaclsen (1930) characterised lbe genos Sicillans (in Polycitorinte af ("lavelinidace) as species with 3 rows of stipmata and cmbedded ponds. Ite dovided the suhtamly inub \& subgenera. 2 of which (Sigillmus and Hijeriondisfomes) atc inclubsal in the genus Sigitlines as delined in the present work. The stomuch lolds chat Michachen used to sepatate the subgernera sigillina and IPyoriosistema were prohably arteliacts and their presence camme be conlimed in the Austratian materabl. Koll (1967), haising hel arguments on the larvile assigned eertain Sigillina to Alapuzea Bicwin. 1956 and. on the hasis ol the hrood pouch and the vegetaltive stalon, assigned the genus to Holopoinac. It is now slear that Aloporare is not distinct Irom Sispillina.

The innagencric relatomships in these 2 gronps of halomend genera (characeserised bo diflerences in their vegetative stolons) are icflected in when chatacters. Relationshops hefwern Sirozora. Dikaplia and /hysxivozan are close all having separate vascular and vegelative stolorns, clacial system:。 smmilar shart pomids, and larvac with tlifadially attanged adhesive oggans. Sigillina and I!ponllistoma are readfly separated from the 3 former genera by thein single penterion: thedrmonal stokon, 3 rather ihan 4 or rasere rows ol stigmata. A olohed atrial aperturc. and latee larsate with complex evesting adhesive theans lhal are not ohemusly related to those ol the ather proup of genera. Of the new genera descrited hercunder. Néndiventa in.een. applars selated lo Divaplia, and Polychsomm n.gen. Was the f-lobed ntrial aperates and short poolds with posteriurly oriented arrial siphons and horimonat gout loop of Hypodisfoma. Hepsistizona and Veodisemm always have it gastrice feservoit in the duct ost the gastro-intestinal gland. Many Disapla species do loon, and athough Sheweog metheilarmis is the only species of sicereda to have onc. the lace that if eceurs af all is luther celdence of the differences helween the 2 grougs of genera in the Hetoroidat It is presstabs that their differences may be found to justify the erection of a bew limily to deconmudatc the Sigillinn ond related extuera sepurately lrom the Hulosodide.

I lie gernis /hypodistoma lok sype species /lypodwanm decrommm (Slaiter. 1895). Was etteced to accommodate species with cloncal systems and srmall poonds with persterinely directed atrial aperture and small abdomina distinguishing then loum Sigillimes. A elationship (hosed on larvitu) exists between IV. decernammand telated species that have eloacal systems. and 5 . fanaviama and simitar species that do mat. Howeser vie separation of Hypedistoma biom sigilling is supported by the smill rowds ol Thpodisurme with their posteriorly orionted atrial apertuses and short ahdomina. by centain differenese in the latwae (see /I prodistomu below). and by the preserece of the cloacal cavity.

I ike Pohdistomm. 2 al the 3 known species ol Hhpredismoma (H. niruhbe and It. 'asiami) have capcesally large larvate that sucuhate in the text lollowing rupture froni the abdomen. This oceles alsa in Disasplias redinarmbara n.sp.. and is, convergent, related to the size of the ege relatise to the pood. bather that all indication of phylogeng.

Many authors have discussed the possibility that
 1945. Brewin 1453. Millat 1960). Abbott and Irason !90is), hewever. this. would deny the veat difference represented by the long vegetative stolon that erecurs in Siveweors hat rom in Diskaplise. Sireneore can aloo be distinguished from Destaplia by the long. when statight-xided heath, ulways will il stalk whels sometames is thin and leathery rather than fleshy, and with parallel dauble rows of zornds. "lhere are some species of Desraplia, with single double low systems of poods and it single tormanal eommon cloatel opening, that rescmble Sicozed in the arrangement oll their soobls. However, in these Distaplim. rows al gonods cantinne over the lop of the head while in Sicenzea they terminate around the margin of the wp ol the licad which is olecn that, alwaya free oll wonids, and hometimes occupied by a large derminal cavity. Exeept for zooids at the top of the cloacal cansats which lase atrial lipse inserted into the rimo of the cloneat apertures (sec Millar 1960), the athial lips of simotoo sooids stre not as long as thote al Distaplig and do not have the tongucelike lobes on the outcr berden that. in the latter species, are usially inserted into the test around the rim of the elosalal aperture. Further, in Sivenena the branchas lobes are reduced and often absent mbogether, there are very fen abd delicate hody: muscles, parastigmatic vesselv are absern, rows al stigmata are patired. Wie stsmach wall is smonth, there are no ennspicunus divisions in the gell posterior to the stomath. there is never a rectit
valve, and the replicative process is more prolific.
Characters of the larvae of Sicozoa that distinguish them from larvae of Distaplia are the particularly deep axial conc of the adhesive organs, absence of ectodermal ampullae at the base of the conspicuous, smooth elliptical stalks of the adhesive organs, and absence of a frontal plate and an occllus. In several Syozoa the larval trunk contains a long epicardial tube extending forwards amongst the adhcsive organs. Although it has been proposed that Sicozoa are uniscxual (Brewin 1953), only some species of this genus are apparently so, and in others the gonads mature sequentially as in Distaplia.

The affinities of Holozoidae are problematical. Polycitoridae Michaelsen, 1904 ($>$ Distomidat Giard, 1872) comhined clavelinid. polyeitorid and holozoid genera in the one family which Michaelsen (1930) and Huus (1937) ehanged into 2 subfanilies (Clavelininae and Polycitorinae) of Clavelinidae Forbes and Hanley, 1848. Van Name (1945) included the same genera in a single family, Polycitoridae, defined as genera in which the body is divided into thorax and abdomen, with the hranchial tentacles arranged in several concentric circles, without internal longitudinal branchial vessels, and with the gonads in the gut loop. Berrill (1950) aecepted Michaclsen's (1930) view of Clavelininae as a distinet suhfamily, and also separated Holoroinate from Polycitorinae, thus recognising three subfamilies in the family Polycitoridae. Differences in the structure ol the vascular stolon, the process of replication, the organisation of the colony, the structure of the larvae, and the presence or absence of a brood pouch are the basis for the elevation of these subfamilies to full family status. viz. Clavelinidae, Holozoidae and Polycitoridae.

Holozoidae do not appear to have a close relationship either with Clavelinidae or Polycitoridae. In addition to their smooth apertures. unique replicative process, and lack of a brood pouch constricted oll from the thorax. Clavelinidae are separated lrom Holozoidae hy their more numerous stigmata (more rows and more per row). larger gonads, more numerous eggs and emhryos, branching vaseular stolons without longitudinal museles and with mesodermal septa, and smaller larvae. Further, in the tarval clavelinid, adhesive organs are smaller and have shallower epidermal cups than Holozoidac, 2 adhesive organs are ventral and one dorsal rather than 2 dorsal and one ventral as in Distaplia and Srrozou and the adult organs (especially the gut loop and pharyn.x) are not so well advanced. Polyeitorid genera resemble Diazonidac rather than Holozoidae in
the lack of a conspicuous vascular processes, and replication by horizontal division ol the abdomen. They have generally smaller embryos brooded in the atrial cavity, and not in a brood pouch as in Holozoidae. If Holozoidae comprise a monophylctic group of taxa and Sigillina is correctly assigned to it, a common ancestry with the Pyenoclavellidae is not precluded (see helow, Sigillina).

The rupture of large ova directly into the test for incubation. which oceurs in certain holozoid species, is universal in Didemnidae and prohably results from their especially large eggs relative to the size ol the 700 ids . Neverthelcss, often there are similaritics hetween $/ / 1$ podistoma and Pol!distoma (Holoroidac), and Arrohmm and Leptoclinides: (Didemnidae) that may not he convergent, and that suggest a possible lincage for Didemnidae. The colonial organisation ol the holosoid Polyclistoma n.gen. resembles that of the didemnid Arriolum Kott, 1983 in which 100 ids have a thoracic hrood pouch and a similarly oriented atrial siphon that opens into a large concavity on the upper surface of the colony. The vascular processes also resemble the simple ectodermal processes ol Didemnidae, and the fooids of all these taxa have similar small, horimontal gut loops.
larval sitc and form, the small number produced per rooid, the well developed brood pouch. the relatively small zooids, the highly organised colonies and, in all hut Sigillina, the highly organised eloacal systems suggest that members of the family have a long evolutionary history as vegetatively replicating colonial organisms.

A brood pouch to incubate the few, but large. emhryos produced by ach rooid represents a different reproductive strategy I'rom Clavelinidae in which numerous, smaller emhryos are brooded in each atrial cavity. However, the small number of eggs produced by each rooid is, to some extent at least, compensated for by the number of zooids produced by the prolific process of replication. Species of Holozoidae form integrated colonies in which the colonies (rather than individual zooids) are the biological units. The site of replication and the hrood pouch are both isolated from the rooids and neither replication nor incubation projudice the capucity of the rooids to continue feeding and contributing to the general operation ol the eolony.

Holoroidae contains 9 genera, of which Sigillina Savigny. 1816 and Distaplia Della Valle, 1881 (nomen conservandum) are well represented in Australian waters. Sycozora Lesson, 1830 (includ-
ing Cyathocormus Oka, 1912) also is represented in Australian shallow water communities and the genus is now known to be more diverse than formerly it was thought, there being 8 species recorded, 5 of them indigenous. Sicozoa is one of the few genera in the Australian ascidian fauna with Antarctic rather than tropical affinities. Polydistoma n.gen. and Neodistoma n. gen., described from Australian waters, appear indigenous. Hypsistozoa Brewin, 1953 (polytypic) previously known from the Peru-Chile Trench (see Kott 1969), and New Zealand is now known to occur in Australia. Only Protoholozoa Kott, 1969 from Antarctic abyssal basins is not represented in Australia.

> Kiv to thif Genera of Honozonsat(* not recorded from Australia)

1. Atrial siphons present 2 Atrial siphons not present 4
2. Stigmata in 3 rows . 3 Stigmata in 5 rows Polvdistoma n.gen.
3. Cloacal systems present Hypodistoma Cloacal systems not present Sigillinu
4. Cloacal systems present 5 Cloacal systems not present .. *Protoholozoa
5. Rows of stigmata grouped in pairs . Sicozoa Rows of stigmata not grouped in pairs 6
6. Gonads present in top of vascular process . . .
. Hypsistozoa
Gonads not present in top of vascular pro-..
cess 7
7. Branchial sac with 4 rows of stigmata. Distaplia
Branchial sac with >4 rows of stigmata..... Neorlistoma n.gen.

Genus Sigillina Savigny, 1816

Гype species: Sigillina australis Savigny. 1816
Colonies are fleshy, either with a round, or conical, or long and cylindrical zooid-bearing head supported on a wide. gelatinous stalk that occasionally is joined to others basally; or they are sessile cushion- or shcet-like. Zooids open separately to the exterior or into common cloacal cavities. Branchial and atrial openings both have their borders divided into 6 more or less equal lobes. Zooids are robust, the thorax and abdomen of more or less equal length, and the stomach ahout halfway down the abdomen. There is always an apprcciable area of unperforated pharyngeal wall both anterior and posterior to the perforated part. The anus opens a short distance up the atrial
cavity. Usually (with the exception of S. fantasiana and S. nigra), longitudinal muscle bands extend from the siphons down the length of the hody and some of the longitudinal fibres continue along the length of the posterior abdominal process which is often very long, extending down the stalk of the colony when one is present. This process contains the extension of the left epicardial sac. Transverse thoracic muscles are sometimes (but not always) present, mainly on the posterior twothirds of the thorax. A brood pouch usually is attached by a narrow neck to the postero-dorsal corner of the thorax, or to the side of the abdomen. One large embryo broods at a time in all species cxcept S. fantasiana which has up to 3 in a sessile brood pouch. The small and often inconspicuous ovary and numerous testis follicles are present in the gut loop. Eggs are fertilised either in the brood pouch or at the base of the oviduct. All embryos in the onc colony appear to be at an advanced stage of development before testis follicles mature.

Sigillinid larvae probably are not liree swimming for long, for in several cases (S. mjöbergi, S. grandissima n.sp.) the tail is withdrawn before larvae are released from the brood pouch. Although the thoracic brood pouch bends up to lie just under the surface test as the embryos mature, it is possible the large larvae are liberated through the atrial aperture as they are in S. mjöbergi (see below) - rather than erupting through the surface test of the colony. In those species in which embryos develop in the test, larvae probably are liberated through the surface test.

Larvae of Sigillina (with larval trunks from one to more than 4 mm long) include the largest known in the Ascidiacea. There are 2 or 3 everting adhesive organs usually in the vertical mid-line at the anterior end of the trunk but sometimes (in S. grandissima n.sp.) triradially arranged. They are unusual, and especially well developed. The central protrusion of each adhesive organ is surrounded by a cup of ectodermal cells or is depressed into the larval trunk. However, rather than being an axial conc as it is in Distaplia (see Cloney 1977). the central protrusion is a long, oval platform or ridge. When everted the columnar cells are in compound branching groups rather than forming a compact conical or cylindrical mass of cells as in most other everting adhcsive organs. The exception is S. mjöbergi which has 2 long invaginatcd tubes similar to those known in Pyenoclavellidae and Euherdmania but unlike those of other Sigillina.

Other characters of S. mjöberg i are so sigillinid that it is difficult to invoke convergence to explain them. A relationship between S. mjöbergi and
Table 3. Summary of Characters of the Species of Sigillina Recorded from Australia

Species	'Biogeographic description	${ }^{2}$ Range around Australia	Colony shape	Colour (living)	Muscles (longitudinal thoracic)	Stigmata (per row)	Larval trunk (length, mm)	Larval adhesive organs (number; shape of axial platform)	Larval ectodermal processes
S. cyanea	A,tr-te	Port JacksonKing George's Sound	fleshy stalked conical to cylindrical head	indigo blue	15	$30+$	3.3	2;circular	$\xrightarrow[?]{?}$
S. australis	A,te	Montebello I. NSW	"	orange-red	15	20	2.0	2;elongate	large rounded ampullae
S. grandissima n.sp.	A,te	Dampier Arch. South Australia	fleshy stalked massive lobed head	pinkish-white	16	20	3.5	24,	"
S. signifera	WP.tr	Cape Flattery to Rowley Shoals	flat topped, inverted coneshaped lobes	dark blue-green zooids translucent test	25	30	3.3	$2 ;$	"
S. fantasiana	A,te	Cockburn Sd Gabol.	flat-topped sheets or cushions	indigo blue	10	18	1.3	$2 ;$	fine tentacular processes with terminal expansion
S. nigra	A.te	NSW	"	"	16	20	2.0	$3 ;$	"
S. mjöorgi	A.tr	Port Hedland Cockburn Snd	fleshy stalked cylindrical head	? colourless ? glassy	15	40	3.3	$\begin{aligned} & 2 ; \\ & \text { invaginated } \\ & \text { tubes } \end{aligned}$	none

[^2]Euclavella claviformis (in the family Pycnoelavellidae) is suggested by their simitar eolonies and larvae, However, the lattor species, like other pyenoclavellids. has smooth-rimmed apertures, numerous rows of stigmata, a number of embryos incubated in the atrial cavity, a relatively long ocsophageal neck and a mesodermal septum in the vascular stolon - all characters distinguishing it lrom S. mjöbergi. An alternative hypothesis that larval adhesive organs ol S. mjöbergi are related to those of other Sigillina in some way not yet evident has the tempting eorollary ol a common ancestor for Pyenoclavellidae and the genus Sigillina.

The condition of the epicardial sacs in Sigillina grandissima n.sp. provide further support for the suggestion of a pyenoclavellid alfinity for this genus. The new species has conspieuous epicardial sacs, which are not lused. Euherdmania claviformis (Ritter, 1903) is the only other known speeies in which epieardial sacs are known not to luse (Berrill 1936) and Eullerdmania's affinity with the Pyenoclavellidae is established through the similarity of its long invaginated tubular larval adhesive organs.

Speeics of Sigillina have more restricted geographic ranges than are usual in the Ascidiacea. The genus is known only from the Indian and western Paeifle Oceans and 7 of the 13 known species are reeorded only from Australian waters. The genus is also unusual in the number of tropieal indigenous species in the Australian fauna tropical speeies usually having a wider range in the Indo-West Pacilie (Kott 1985). However, the occurrence of sister species in Sonth Alriean waters may have resulted from speciation from the tropical fauna rather than being indicative of a Gondwanaland origin.
it is probable the large larvac with their long incubation in the parent colony are not widely dispersed, resulting in the isolation and speciation ol populations.

Close relationships between eertain species are cvident. The known species fall into the following groups:

1. Fantasiana group. containing S. famasiana from Cockburn Sound (Western Australia) to Gabo I. (Victoria); S. migra from New South Wales; and probably S. digitata from South Afriea (see Millar 1964).

These speeies all form sessile, cushion-like colonies rather than upright and usually stalked ones of other speeics. The two Australian speeics have much reduced vaseular stolons without apparent muscle fibres on them. The principal eharacteristicn of the group are found
in the large larvae with long, narrow ridges of eolumnar cells depressed into the larval epidermis, and a waist-like constrietion between the anterior adhesive apparatus and the developing oozooid with its mass ol yolk. Both Australian speeies have a ring of unusual spike-like ectodermal processes around the adhesive organs. These ectodermal processes arise in a band from the epidermis behind the adhesive apparatus and reach the surface test around the anterior end of the larval trunk. They may be homologous with the fine tentaclelike processes found in a single circle around the adhesive organs in /lypodistoma.
2. Cyanea group, containing S. cyanea with a range from north-western Australia south to King George Sound on the western coast and to Arrawarra on the eastern coast: S. australis with a wide range around the Australian coast From the Montebello 1s and south across the Great Australian Bight to Port Jackson on the eastern coast; S. grandissima n.sp. from the Dampier Archipelago to Cockburn Sound and the Great Australian Bight; and S. signifera from Rowley Shoals off north western Australia, and on the eastern eoast from the Swain Reefs and to the north. The latter species is the only one in this group that is recorded widely in the western Paeifie, viz. from Indonesia and the Philippines.

Horizontal (transverse) muscles are ahsent from the thorax in several species of the cyanea group, viz.. S. atustralis and S. çanea. However, they are present in S. grandissima and S. signifera. The longitudinal museles eontinue onto the vascular proeess where they usually are conspicuous. Larvac are espceially large. with the secrctory cell.s of the broad adhesive organs forming large, circular or oval platforms, and with large, wide, rounded cctodermal ampullae around the anterior end ol the trunk. Probably S. mohiusi (Hartmeyer, 1905) from South Africa and Malagasy is a member of this group.
Only S. müobergi. with its long, tubular, larval adhesive organs; and S. psammophorus (Hartmeyer, 1912) from South Africa with a sandy test and 8 true stomateh folds, do not have a close relative amongst the known speeies of the genus.

$$
\begin{aligned}
& \text { Kiry rotir Specilas or Sicillifat } \\
& \text { Ricordiderron Australia }
\end{aligned}
$$

1. Colony a flat investing shcet 2 Colony not a flat investing sheet 3
2. Larval trunk 1.3 mm long; eolony $<1 \mathrm{~cm}$ thiek S. fammasiana

Larval trunk 2.0 mm long; colony $>1 \mathrm{~cm}$ thick S. nigra
3. Colony numerous small flat-topped lobes ... S. signifera
Colony not numerous small flat-topped lobes
. . 4
4. Colony massive conical to lobed heads; horizontal muscles on posterior two-thirds of thorax S. grandissima n.sp.
Colony narrow conical to cylindrical heads; no horizontal muscles on posterior two-thirds of thorax
. . 5
5. Thoraces transparent S. mjöbergi

Thoraces not transparent. . .6
6. Stigmata per row about 20 ; living colonies orange . S. australis Stigmata per row about 30; living colonies blue. S. cyanea
There are 3 other spectes of this genus known from adjacent areas:
Sigillina digitata (Millar, 1962) from South Africa has massive cushion-like colonies 5 to 7 cm thick.
The larval trunk is probably the longest known in the Ascidiacea (Millar 1964:4 to 4.3 mm long). The larval adhesive organs and ectodermal ampullae rescmble those of S. fantasiana and S. nigra from southern and eastern Australia, respectively.
Sigillina mobiusi (Hartmeyer, 1905) from South Africa, Mauritius and Malagasy, has variable, sometimes upright, stalked colonies and both longitudinal and transverse thoracic muscles. It is distinguished from S. grandissima n.sp. by its smaller colonies and fewer (10) branchial stigmata (see also Hartmeyer 1912: ? Millar 1962: Plante and Vasseur 1966).
Sigillina psammophorws (Hartmeyer, 1912) from South Africa has an outer layer of sand, 8 stomach folds, and its affinities are not known.

Sigillina australis Savigny, 1816

(Fig. 28. Plate 7d,e)
Sigillina australis Savigny, 1816, p. 179. Caullery, 1895, p. 832; 1909, p. 47. Michaelsen, 1930, p. 495.

Atapozoa marshi Brewin, 1956a, p. 31. Millar, 1960, p. 83. Kott, 1972b, P. 168; 1975, p.2.

Distribution
Nf.w Records: Western Australia (Montebello 1s, WAM 989.83; Carnarvon, WAM 765-6.83 857.83, QM CH2151 2; Houtman's Abrolhos, WAM 773.83; Triggs 1. WAM $75.7824 .84 \quad 16.87 \quad 18.87$ 191.87: Cockburn Sound, WAM 20.84, QM G9479; Cape Naturaliste. WAM 132.75: Margaret River, WAM 778.83; King George Sound. WAM 987.83). South Australia (Great Australian Bight, QM GH944 GH947). New South Wales (Nelsons Bay, QM G9634).

Previously Recorded: Western Australia (Sharks Bay to Albany - Michaelsen 1930; Triggs 1. - Brewin 1956a). South Australia (Great Australian Bight - Kott 1972b; Investigator Strait - Kott 1975). New South Wales (Port Jackson - Savigny 1816). New Zealand (North I. - Mitlar 1960).

The species has been taken down to 20 m . It appears indigenous; being recorded mostly from temperate locations. However it does extend into the tropics on the North West Shelf.

Description

External Appearance: The colonies are oval, or conical, or long (up to 56 cm) and cylindrical zooid-bearing heads that are only slightly greater in diameter than their fleshy stalks. Stalks are longer than the head of juvenile colonies, about equal to the length of the head in moderate sized colonies, and very much shorter than the head in well developed colonies with long cylindrical rope-like heads. Zooids open all around the length of the head, the branchial aperture uppermost and the atrial aperture toward the stalk. The posterior ahdominal stolons extend through the centre of the zooid bearing portion and down into the stalk. New replicated zooids are added to the colony at the top of the stalk. Zooids at the top of the zooid-bearing part are the largest and at a later stage of sexual maturity than those at the bottom.

Living colonies are orange or pinkish-orange. In preservative the test is sometimes pinkish-grey and translucent with cream to brownish zooids.

Internal Structure: Zooids are about 5 mm long. Thorax and abdomen are of more or less equal length, although the thorax is usually more contracted than the abdomen in the preserved material. The thorax is wide. Both apertures arc on short, cylindrical siphons on the anterior end. There are about 15 longitudinal muscles on the thorax, 9 radiating from the branchial siphon and 6 from the atrial siphon. Fine circular muscles form an almost continuous sheet around each siphon, but no transverse muscles are evident on the thorax. Fine muscle bands extend from the thorax, over the abdomen and onto the long, posterior ahdominal vascular stolon where they usually are conspicuous. There are about 24 branchial tentacles in 3 concentric circles, the largest in the posterior circle.

In the branchial sac there is an extensive unperforated area both anterior and posterior to the 3 rows of about 20 stigmata. Wide transverse membranes between the rows expand into triangular languets in the dorsal mid-line.

The gut loop is relatively short and straight. The small, smooth-walled stomach is in the upper third of the abdomen and there is an oval posterior

stomach in the descending limb. The rectum is voluminous, terminating in a smooth bilabiate amus that projects up into the atrial cavity. About 20 pear-shaped testis follicles lie in the gut loop. A small egg can sometimes be found in the oviduct More often a single egg is found in the brood pouch attached to the postero-dorsal end of the thorax by a narrow neck. The egg is apparently fertilised, and the embrya completes its development, in the brood pouch. Eggs of zooids in each colony appear to be fertilised and development bugun before testis follicles fully mature. Ore colony (WAM 989.83) has fully mature testis folficles and expended brood pouches. Brood pouches still attached to the dorsal border of the thorax bend up to lie just under the surface of the test as the embryos mature. Tailed larvae are present in specimens collected in December from the Mantebello 1s (WAM 989.83), in July from off Carnarvon (WAM 765-6.83 and 857.83), and in August from Triggs 1. (WAM 16.87).

Larvae are large, the trunk about 2 mm long and the tail about the same length. Developing adult organs are at the posterior end of the trunk. and a large yolk mass occupies the centre of the trunk. The anterior one-third of the trunk is taken up by the adhesive apparatus. In one colony (WAM 765.83) larvae, although they appear to be at the same stage of development, are of different sizes, ranging from 1.2 to 2.0 mm . There are iwo long adhesive organs one above the other in the anterior mid-line. Each consists of a long strip of tall secretory cells arising from the base of a narrow trough-like depression. As the embryo develops, the larval epidermis along each side of these adhesive organs is produced into a row of 4 or 5 rounded ampullae, and each adhesive organ is produced forwards on a short wide stalk. The strip of vertical secretory cells erupts when the concave base of the trough, in which it is contained, everts, presumably as a result of internal pressure applied through the haemococlic cavity of the larval trunk. The groups of secretory cells on their branching stalks then separate from one another to effect an attachment to the substrate over as wide an area as possible.

REMARKS Apart from the colour of living colonies, this species resembles Sigillina cianea closely and preserved specimens in which the
colout is lost cannot be readily distingushed (see also Sluiter 1909. Hartmeyer 1919). Sigillina ausiralis has slighlly less robust zooids, with narrower thoraces and only about 20 stigmata per row, rather than the 30 stigmata per row in S. cyanea; and the number of testis follicles in the present species (about 20) is usually less than in S. cyanea (30 to 40). Further in the latter species the test is slightly tougher, the zooids are more firmly attached to it and the muscles on the posterior vascular stolon are more conspicuous. Clear morphological differences can be observed in larvae, those of S. cyanea being much larget $(3 \mathrm{~mm})$ and having more rounded adhesive organs than the present species. Sigillina grandissima n.sp and S. signifera have similar, though even larger larvae. Specimens of the latter species are distinguished by their flat-topped, lobed colonies Sigillina grandissima has distinctive granules in the epieardial endothelium, and ransverse thoracic muscles.

Specimens from the type location of Atapozod marshi have all the characteristics of the present species.

Sigillina cyanea (Herdman, 1899)
(Fig. 29, Plate 7f.g)
Colella cvanea Herdman, 1899. p. 70.
Eudistoma cranea: Kotr, 1957a, p. 79.
Eudistoma cyancum: Millar, 1963a, p. 714,
Sigillina caterulea Stuitet, 1909, p. 31. Harmeyer, 1919. p. 113.

Not Distoma carrulea Stuiter, 1898, P. 14.
Not Eudistoma caeruleum: Plante and Vasseut, 1966. p. 147, Millar, 1964, p. 163.

Disimibution
NEw Records: Western Australia (Port Hedlatid, WAM 986.83: Dampier Archipelago, WAM 784.83 786.83; Montebello Is. WAM 771.83 14.87. Kendres 1. WAM 976.83 ; Northi West Cupe, WAM 772.83; Exmouth Gulf, QM G9480; Shark Bay WAM 7747.83 $779,83781.83783 .83$ 15.87. Cervantes I.. WAM 177.87 185.87 192.87; Houtman's Abrothos, WAM 224.88; Dongara, WAM 990.83: Penguin 1.. WAM 13.87. QM GH4101; Cockbusn Sound. WAM 127.75 150.75 165.75 $175.75 .864 .82780,83.987-8.83$, AM Y2132, QM G9266 G9479: Cape Naturaliste. WAM 167.87: King George Sound, WAM 19,87). New South Wales (Cronulla, AM Y2120. Nambucce Heads, QM G10008: Arrawarra. QM G96.34). Quecosland (Capricoris Group. QM Gl19068).

FiG. 28, Sigilina australis: a colonies (QM GH944): b, zooid (WAM 75.78), s, early larva (WAM 766.8.3); d. adhesive organ, front view, showing central flat-topped ridge of groups of upright columnar cells. The tider has side branches connecting it with the surtounding cup-like structure, and possibly strengthening and supporting it (WAM 766,83), \boldsymbol{e}, advanced larva with adhesive organs everted (WAM 765.83). Scales: a, Icm; b,e,e, $0.50 \mathrm{~m}=$ d. 0.1 mm .

Previously Recorded. Western Australia (Cape Jaubert Hartmeyer 1919; Triggs 1., Cockburn Sound - AM Y1280 1 Kott 1957a). New South Wales (Port Jackson - Herdman 1899). Aru Is (Sluiter 1909).

The species has heen taken down to 150 m . Although the records are mainly from tropical locations, especially off the northwestern Australian coast to the Arafura Sea, it also extends into temperate waters of southwestern Australia as well as New South Wales. However it has not yet been recorded from the southern coast of Australia east of King George Sound.

Description

Exterval Appearance: Colonies have oval, conical, or very long cylindrical rope-like heads up to 70 cm long and about 3 cm in diameter. Fleshy stalks are almost the same diameter as the zooidbearing head. Stalks are longer than the head when the colony is small, the same length as the head when the latter is oval or conical, but when the head is long and rope-like the stalk is very much shorter. Thus a colony of 70 cm length has a stalk of only 12 cm , and a colony of 7.5 cm has a 5 cm long stalk. Basally the stalk may separate into very short root-like projections that help it to attach to the substrate. Occasionally broad stalks are found with small regenerating heads (WAM 976.83).

Zooids open all around the head, the atrial openings uppermost and the branchial openings toward the stalk. The long posterior abdominal stolons of the zooids project into the centre of the colony and down into the stalk. The test is firm and the anterior ends of the zooids, which lie against the inside of the outer layer of test, are firmly fixed to it, and are difficult to remove from the colony.

Living colonics are indigo blue. The deep blue pigment leaches out into preservative following fixation. Colonies long in preservative have an almost colourless test and dark, or blue zooids.

Internal Structure: Zooids are about 4 mm long in contracted state, with the thorax only about one-quarter of the length of the abdomen. The posterior abdominal vascular stolons are particularly long and conspicuous. A layer of fine circular muscles surrounds each of the short siphons. Longitudinal thoracic muscle bands are conspicuous, about 9 radiating from the hranchial siphon, and 6 from the atrial siphon. These longitudinal bands are less conspicuous over the abdomen, where they spread out rather than coalesce into a broad band. Fine muscle bands continue along the posterior abdominal stolons. There are 3 circles of branchial tentacles - about 16 in the two posterior circles and rudimentary tentacles in the anterior circle.

The pharynx is broad with 3 rows each of at least 30 stigmata. There is an expanse of unperforated pharyngeal wall both anterior and posterior to the perforated part. The oesophagus is short and the relatively small, smooth stomach is in the upper one third of the abdomen. A small, oval posterior stomach is separated from the proximal part of the rectum by a narrow constriction in the posterior third of the abdomen.

The testis, contained in the loop of the gut, consists of 30 to 40 follicles. Although a small egg is sometimes visible in the oviduct, one has not been observed in the loop of the gut, where it may be obscured by male follicles. A single, small egg apparently is fertilized and completes its development in the brood pouch which is separated from the postero-dorsal corner of the thorax by a narrow constriction. Tailed embryos are present in the brood pouches of the zooids of colonies collected in October from Cockburn Sound (WAM 988.83) and in August from Wistari Reef (QM Gll908). However, well developed larvae were present only in colonies taken from Rottnest 1. in January (QM G9266).

The larvae are large, with a trunk about 3.3 mm long. The tail is only about the same length as the trunk. It is fusiform, narrowing to its junction with the trunk and becoming wide halfway along its length. The developing adult organs are crowded in the posterior quarter of the trunk. A large yolk mass occupies most of the trunk. Two adhesive organs are in the anterior mid-line, one above the other. Each consists of a long, vertical, oval concavity in the larval epidermis with a mass of adhesive papillae rising from the centre of the concavity. Probably as a result of pressure within the larval haemocoel the concave base of the organ everts and the papillae are thrown forward, projecting from the front of the larva, and spreading apart from one another on branching stalks. The tips of the everted papillae extend over an area of about 0.6 mm diameter. An ocellus and otolith are in the cerebral vesicle.

Remarks: Sigillina ceyanea is mainly tropical, being absent from the southern coast of Australia, while the related S. australis is present across the southern coast of Australia and extends north to Port Jackson and Montebello is on the eastern and western coasts respectively. The species overlap along the eastern and western coasts of the continent. Apart from its blue colour S. cyanea (espccially the variations in the shape of the colonies and the morphology of the zooids) closely resembles the orange S. australis, However, S. yanea has more numerous stigmata, more conspicuous muscle fibres on the vascular stolon

FIG. 29, Sigillina cyanea: a, outline of colonies (WAM $776.833 \times 783.83778 .83$); b, colony showing 7.00ids (QM G9479), c,d, zooids from left, and postero-dorsal view with brood pouch removed (WAM 773.83): e, larva (QM G9266); f, front view of adhesive organ showing groups of columnar cells depressed into the larval ectoderm (QM G9266): g. everted adhesive organ (QM G9266); h diagrammatic section through larval ectoderm in vicinity of an adhesive organ. Scales: $\mathbf{a}, \mathbf{b}, 1 \mathrm{~cm} ; \mathbf{c}-\mathbf{e}, 0.5 \mathrm{~mm} ; \mathbf{f}, \mathbf{g}, 0.1 \mathrm{~mm}$.
and zooids more firmly fixed in the test. Further, S. cyanca has a larger larva with oval groups of adhesive papillae rather than the elongate lamella of S. australis. As the embryos mature, the brood pouches bend anteriorly toward the atrial aperture to lie just inside the surface of the test. as in S. australis.

Sigillina cacrulea Sluiter 1898 froms South Africa, Mozambique and Malagasy is a different species - possibly of Eudistoma - with a characteristically cudistomid larval truok 0.7 mm long brooding in the atrial cavity (see Millat 1962; Plante and Vasseur 1966),

Sigillina fantasiana (Kott, 1957)
(Fig, 30, Plate 8a)
Eidistoma fantasiana Kott. 1957a. p. 76.
Atapozoa fantasiana: Kott. 1967, p. 187, 1472a, p. 7. 1972b, p 168 ,
Distrisvatom
Nrw RFrokts Western Ausiralia (Cockburn Sound. WAM 863.83 QM GH2120. WAM 936,83). Suuth Austrulia (Spencer Gulf, QM GH3704; St Vincent Gulf, SAM F2082). Victoria (Poriland; Gabo L. MV F53161).

Previousty Recorden; South Ausiralia (Great Austrulian Bight - Kott 1972b; Spencer Gulf - Kott 1957a: Encounter Bay - Kout 1972a).

The species has been taken from 2 to 14 m
Descrietion
Extrinal Apmarance Colonies ure flat, circular to irregular investing cushions less than 1 cm thick and up to sem in diameter with a smooth, even surface. The test is soft and, in preservative. transparent, usually with dark pigment particles, especially in the surlace layers. This dark pigment is occasionally confined to the zooids themselves and is eventually lost altogether. Living specimens are bright blue throughout. Zooids are evenly spaced, opening by branchial and atrial aperuses onto the upper surface of the colony. Colonies are often found growing around stems of seagrass (Ilormosira).

Internal Structure: The zooids are abour 5 mm long. The thorax, in moderately contracted specimens, is only about a third of the total length, the abdomen being relatively long for species of this genus. The posterior abdominal vascular stolon is relatively short and delicate, and muscle fibres were not always detected on it. About 10 longitudinal muscle bands on the thorax radiate from the apertures and posteriorly extend down each side of the abdomen, converging to a point on each side of the mid-ventral line at the level of the posterior end of the gut loop. The slender vascular stolon projects from the abdomen between the two slightly protruding points where
muscles converge and terminate. There are also about 12 transverse muscle bunds on the thorax. These exchange fibres with the longitudinal bands. In the branchial sac are 18 long narrow stigmata in each of 3 rows and an area of unperforated pharyngeal wall anterior and posterior to the perforated area.

The oesophagus is relatively long - the small, spherical stomach and an oval posterior stomash being present in the posterior third of the abdomen. The rectum extends from the pole of the gut loop to about half-way up the thorax. A mass of male follicles in the gut loop spread out over the left (dorsal) side of the intestine. Outside the testis follicles is a group of 3 to 5 small eggs. Eggs probably are fertilised in the upper (distal) part of the oviduct - in the upper part of the abdomen - where 3 embryos, at different stages of development can be found fncubating, the most anterior being the most advanced. A marked dillerence in sire exists between the incubating embryos in the expanded part of the oviduct (which forms a brood pouch). each successive one being stoout twice the size of the one posterior to it. Embyros protrude from the zooid as they develop, but the brood pouch is not constricted off from the rest of the zooid. Developing embryos are present in specimens from Cockburn Sound in November (WAM 863.83 936.83). Spencer Gulf in May (QM GH3704), St Vincent Gulf in October (SAM E2082). Wright 1. (Encounter Bay, SA) in November, and Gabo 1. (MV F53161) in May. In fact, the species apparently broods embryos throughout the year.

Larvale are large, the larval trunk being 1.3 mm long and almost spherical. The tail is relatively long, being wound about three-quarters of the way around the trunk. Adult and larval organs are well developed with 3 rows of long stigmata, a large cerebral vesicle with ocellus and otolith and a well-formed gut loop. Two long nartow adhesive organs lie in the mid-line anteriorly. This anterior part of the larval trunk is separated from the more posterior part (containing the adult organs) by a constriction or waist. Each adhesive organ consists of a narrow, vertical strip of parallel seoretory cells rising from a concavity in the anterior end of the larva. A ring of uniform, long, spike-like processes arises from the ectoderm at the base of the adhesive organs and encircles the anterior end of the larva. There are also 3 rounded ectodermal ampullae on each side, just posterior to the ring of spike-like processes, one each side of the mid-ventral and mid-dorsal lines, respectively, and one opposite the space between the two adhesive organs.

Fic. 30. Sigillinu fantasiant: zooids, a. from left with embryos. and b, from right whout embryos (QM GH2120) GH3704) c. larva (QM GH2120). Scales: a-c; 0.5 mm .

Remarks. This species with S. nigra (sec betow) and probably S. digitata from S. Africa (see Millar 1964) is a member of the fantasiana species group. characterised principally by the larvae with ectodermal spikes around the long, narrow adhcsive organs, relatively small ectodermal ampullac and a waist dividing the anterior and posterior ends of the larval trunk. The fine cetodermal processes that encirele the adhesive organs are in a single ring in S. funtasiana but are in a wide band in S nigra. These may be homologous with the ectodermal process in a circlo around the adhesive organs in Hrpodistoma. Similarly large larvac with large adhesive organs (depressed into the anterior test) accur in Hypodistoma although the waist is not present. The intense blue pigment in both S. higra and the present species rescmbles that of S. cyranea. The colour of S. digitutu has not been recorded.

The method of replication in this species deserves investigation, and in should be noted that
accessible populations occur at 3 to 4 m off Whitford Beach, Cockburn Sound, Western Australlia.

Sigillina grandissima n.sp.

(Fig. 31. Platc \%b)
Disirikt THON
Tyיf Locatilits: Western Australia (northwest of Rosemary 1. Dampier Archipelago, 70 72m, 3.1279, holotype WAM 846.83 QAT G/I2lld northwest of Carnac 1., Cockburn Sound, 3 4ni, on rief, 7.12.77. paratype WAM 782.83). Soush Australia (Iopgallant J. Greal Austrahan Bight. 1.7 m, chll. S. Shepherd et al., 29.3.82. pitatypes (QM G11305, 5.1.M E1983).

Further Ricorbs. Western Australia fortheast of Montebello Is, WAM 985.83: "Northwest Cape, W'AM 772.83; Houtman's Abrolhos. WAM 95.78370 .80767 .83 $830.83 \quad 192.88 \quad 195-6.88 \quad 219.88$; Cervantes I. WAM 183.87 186. 7.s7). South Ausiralia (Great Australian Biglti, QM (3114150).

The species has been taken from 3 m down 1072 m from the northwestern shelf of Western Australia and
*oullwircockburn Sound. Although there ure berceords fomm somthon Cockhurn Sound, it is grobaste dhat its range er contimunts around the subthwestern corner ot Australia $10{ }^{\circ} 1$ opgallime 1 . in the Gecat Ausiralian Bight.

Externil Abprarsinc\% Colontes are single undivaded conical 10 rounded lobes an short. wide \$talks, or massive suhdivided colonies, narrowing to a short stath hut with the individual lobes of the zooid-hearing beids terding to flattin and expand rather than narton towitrd the top. Smaller lobes are rounded in section thoughout. without appreciable difference in the dianneter of the zooid-bearing hesds and their slaths. The largest calony (WAM \$46.83) is divided into 6 labes arising from a cammon base lhe colony is thout ldem wide and locm high: and the separate lohes are ahour 3 lo 4 an dianmeter thoughout.

Yaonds, opening all arthum the upper hatl to threc-quattors of coch lobe hecome smaller towatd the bitse where the new vegetatively produced zonids are homg added to the colony.
l.iving colonies from South Australia are described as bright orange moids in a clear mattix. In presecvative the zooids are often blue, whough somelinues that colour siont. The preserved test is tramslacent or, in at few colonics. it is hated and "payue.

INTERN.! Struvaturl: Fonoids arte ahoul 5 mm long. the thorat and abdomen of aboul colual lengith. In addition, there is a conspicuous, lange and strong vasculas stolon. The thorax has about 16 langitadinal masele bands that tadiate from the siphons along the length of the body. and extend omo the vascutar solon, furming it hishel alongeach side. About 10 transverse muscle hands ran draund the putcrion two-thirds of the thorax. Fight large, hut somelintes stumpy, branclatal tentacles encircle the base of the hrimchial siplion, in front of these are 2 circles of progsessively smaller icntacles. There are about 2 (l) long stigntat in each of 3 tows, and a strip of unperforated pharyngeal wall anlerior to the slegmala.

I'he oesopliagus is about one-lhird of the length al the atidnomen, the round, smooth stamach being in the middle lhird and the small posterior stomach st the posterior third. Cionats are in the gut loop and are remarkably large and comspocuous for this
 Inllices spreading wut over the gut. In speceitnens with immature restis. the male follieles ean still be ohserved as at cense clunnp of follieles on the left side of the pole of the gut loon, sigainst the rectmm. A gromp di 2 or 3 uva lie in the abdomen. A single embryo develops in a brond posteh separatced from the thotad by a narrow nech.

The most striking charicters of this specoss are the epicardial sues Jormed of dark. bluish-black, syuamous eputhelum, the colour derived from durk. juracellular, melanin-like granules. The lefi and tight sats. cath with a natrow anterion form that partly encircles the aksophagus at the posterios end of the tharax. meen thut do not luse. ventral to the otsophagus. I hesessacs cxtend down the ventral surface ol the ahdomen appearing is at darkly bobloused strap that protruden inta the gut loop and between the stomach and rectum The deft sac: terminates blindly just posterion to the pule ol the gut laop. The right sac swells nut to a balloondike expansion just posterion to the samach. but its diancter decreases abrupty and It becomes a flattened tube at the top of the vascular process. This flattened twbe forms the seplum hetween the two blood channels along the whole lenerth al the lang, inugh vaseular protess. In the adalt rooids, the anterion horn of cteth sac tenninutes close bo. but apparently docs nut open intos, the pharymx, ithough it does in the larval. The dark intraccllulat granules are sometimes present in the endoblesmal cells of the pharyms. especially along each side of He windowic ind bnimg the stigmilta. This darkly pigmenled cpicardial epithclium occuts in atl the preversed newly recorded specemens except the holotype. in which the cpicardial sacs are bonspicuous and piganented anly in the larvate.

Mature harvite are present in the lonlolypecolony (collested in December) and in a specimen from Cervantes 1. (WAM 183. 87) eallecicd in May: Tisilcd combryos, whough not lully developed larvae, are plesent in the Abroltoos (WAM 19688) ind South Australian specimeas (QM GHI305. SAM El983) collected in March. l.arvas are rohust and their test is tough and limm. "The latyal trunk is 3.5 mm long, and the tail harcly tatches lo its anlurior end. There is the ustial otnliah and ocellus in the cercbral vesicle, which is far butk

[^3]
on the upper surface near the base of the tail. There are 2,3 or 4 adhesive organs. When only 2. they are arranged, as in S. ausmalis, in the anterior mid-line: when 3 are present they have at tradial arrangement, the dorsal one vertical in the median line and the ? Yentral ones

Fis, 32, Sisillima miohergs. a, colony (WAM 155.57): b, zooid showing its orientation in the colony semidiagramatic: c , fooid liewed from anterior end (WAM 860.x3): d. abdomen (WAM 129.75): e, larva (QM CHIL22). Scales: a. 2em; bec. Inm: d.e. 0.5mm.
symmetrical and radiating away from the centre of the anterior end of the trunk. A lourth, or accessory adhesive organ, is sometimes present helween the symmetrical ventral ones. The adhesive organs develop in a similar way on those of S australis - with the differentiation ol a group of secretory cells in the base of a concavity at the antertor and of the larval trunk. In the larvae of the present species each athesive organ, with its concavity comaining the secretory cells, is produced forward on a short stalk. On settlement. the concavity everts. forcing the secretory cells forward and spreading them away from one another.

Also, large, flat, forward-projecting ectodermal ampullae are developed from the larval ecioderm around the base of the adhesive organs (as in S, australis and S. signifera). There arc 3 on cach side, the middle one horizontally flattened and the dorsal and ventral ones laterally flattened.

Rimakes The long vascular stolons which are sufficiently strong to be pulled from the colony without the risk of breaking. and the huge larvue (the second largest known in the Ascidiacea) are unique leatures of this specics. The darkly pigmented wall of the epicardial cavity is also a most distinctive feature, as is the large testis with numcrous follicles spreading out hehind the gut loop.

Sigillina disitata (Millar, 1962) from South Africa has similar colonies to those of the present species. The South Alrican species has smatler (3 mm) zooids, shortor stigmata and larger larvae with long narrow hands of secretory cells and without the large rounded ampullae of the present species.

The affinities of S. grandissama are probably with the cyanca group, us larva resembling those of S ansralis. S. vanea and S. signifera. The orange of living colonies resembles that of S. australis although the blue in the preserved zooids iesembles the blue of S. ivanera zooids that have been proserved for a long time. Howcver, the thorax of the present species has transverse muscles -- as character not shared by ether S evanea, S. ausirulis or S. signilera.

Sigillina mjobergi flartmeyer, 1919
(Fig. 32)
Shillinu mühergi Harlmeyer, 1919. p. 117.

Nriv Recemens. Western Australia (Port Hedland, WAM 1005.k.3. Dampier Archupelage, WAM 12475 QM GH820.WAM 144.75: Montebello Is, WAM 860 1.83 QMGH2122 GHINH, WAM991 2.83: Juricn Bas. WAM 994.83. Geraldton, QM GH4221, Dongara.

WAM 993.83; Cockburn Sound, WAM 9.75 787.83).
Prfviousiy Recoridid; Western Australia (Cape Jaubert - Hartmeyer 1919).

The species has been recorded down to 140 m and it has not been taken from less than 30 m . This may be the reason for the relatively few records and the limited known range, viz, the north-western continental shelf of Australia.

Description

External. Appearance: Colonies consist of a cylindrical to club-shaped, glassy, transparent zooid-bearing head, not more than 6 cm long and 3 cm in diameter. It narrows basally to a long (up to 8 cm). narrow, hard, leathery stalk that divides into root-like processes at the point of attachment to the substrate. Several heads in the present collection (WAM 860.83) do not have a stalk and, like the type material (Hartmcyer 1919), are either sessile, or have been separated from the stalk during collection. Zooids, about 4 mm apart from one another, are arranged in parallel vertical rows, each zooid alternating with those in adjacent rows. As is usual for zooids in stalked colonics of most taxa, they are upside-down - the endostyle and branchial aperture below, and the dorsal border and the atrial aperture above. The thorax is perpendicular to the surface of the colony and the abdomen curves down toward the stalk. Large embryos often are present in the brood pouch lying above the zooid.

Zooids are firmly fixed in the firm test of the glassy head. Consequently they are impossible to remove entire from the colony and they do not contract on fixation. In preservative the fully expanded thoraces are clearly visible and the colonies are spectacular. The zooids become smaller toward the base of the head where new, vegetatively produced zooids are being added. The posterior vascular stolons can sometimes be scen through the hard translucent test of the stalk, but in other specimens the stalk is horny and opaque, and has barnacles, bryozoans and other epibionts growing on it.

Internai Strijctire: Zooids are small, not more than 4 mm in total length, with the almost spherical thorax larger than the abdomen. Fifteen fine longitudinal muscle bands radiate from almost sessile, small, 6-lobed apertures, over the sides of the thorax and onto the abdomen. Some fine muscle fibres continue along the posterior abdominal vascular stolon. Branchial tentacles are arranged in 3 circles, the largest (about 8) in the outermost or most posterior circle. Thirty to 40 longish oval stigmata are in each of the 3 rows. In younger zooids it can be seen that the middle row of stigmata lengthens first, while stigmata in
the anterior and posterior rows remain short and almost circular (as they are in the larvae). Stigmata in the posterior row then lengthen, first at the dorsal end of the row, while the stigmata in the anterior row lengthen first at the ventral end of the row. An area of plain unperforated membrane exists both anterior and posterior to the perforated part of the pharynx.

The gut loop is very short, with the small, rounded stomach about halfway down the abdomen. A smalt, oval posterior stomach is present in the descending limb. The rectum curves around in the pole of the loop and extends anteriorly to open at the base of the atrial cavity. Gonads are crowded in the gut loop, and consist of about 9 to 16 sometimes relatively large, pearshaped testis follicles. These mature only after the single embryos in the brood pouches of most zooids in the colony are at advanced stages of development. Only one egg is present in the brood pouch at a time. It arrives there when small and, presumably, is fertilised there.

Tailed larvae are amongst the largest known in the Ascidiacea, with a larval trunk up to 3.3 mm long. They are present in specimens collected off Port Hedland in October, and in April and June from the Dampier Archipelago. Specimens collected from the Montebello Is in December also have well formed embryos. Embryos at the anterior end of the colony are most advanced, or zooids there have expended brood pouches while embryos halfway along the head are reaching maturity. Despite their large size, larvae apparently are released through the neck of the brood pouch and the atrial aperture. In fact, some larvae have been found with the tail, folded back on itsell, jammed into the neek of the brood pouch and the larval trunk deformed and much elongated. Others have their posterior end jammed into the neck of the brood pouch and the tail shrivelled in the process of withdrawal and resorption. Adult organs - pharynx and gut loop - arc conlined to the posterior end of the larval trunk. An ocellus and an otolith are in the cerebral vesicle, and 3 rows of small circular stigmata are present. Anteriorly the larval trunk is pointed, with the openings of the two long, invaginated tubes of the adhesive organs, one above the other in the anterior mid-line and a large flat, triangular epidermal ampulla on each side. Large bladder cells are packed in the larval test making it firm.

The thin invaginated tubes of the adhesive organs extend back through the larval trunk to the oozooid. As the trunk lengthens and narrows and its posterior end begins to press out into the neck of the brood pouch, the blind ends of the
lubes move anteriorly, the tubcs become shorter and wider. Eventually the proximal ends of the tubes (around the openings) evert slightly from the anterior end of the larva as cylindrical projections between the triangular epidermal ampullae. Subsequently the blind ends of the tubes cvert and project up into the cylindrical openings at the anterior end of the larval trunk.

These large larvae are unlikely to have a free swimming phase since the tail is resorbed before their release from the parcnt colony. Presumably, following their release they settle down near the parent.

REmARKS: Larvae of this glassy. transparent, and possibly indigenous species are remarkable. The adhesive organs resemble those of Pycnoclavellidae and Euherdmamia, but in the present species the long tubes have not been found completely everted hefore scttlement. However, no other characters suggest a close phylogenetic relationship. Further, many of the characters of S. mjöhergi especially the single, large larva, position of the brood pouch, body musculature, 3 rows of stigmata, size of the abdomen and course of the gut are characters shared with other species of Sigillina.

Thus, until more evidencc becomes available. the species must be considered a member of Sigillina in which larval adhesive organs have diverged markedly from those known in other species of the genus.

Although stalks are absent, Hartmeyer's (1919) description agrees with the recently recorded material, including the unusual pattern of development of the hranchial stigmata. Stalks of this species differ from those of others in the genus, which are invariably thick and fleshy rather than narrow and leathery.

Sigillina nigra (Herdman, 1899)
(Fig. 33)
Polvclinum nigrum Herdman, 1899, p. 84.
Dintriblition
Nrw Rreorns New South Wales (Bateman's Bay, AM Y2208)

Prfyiousiy Ricoridfy New South Wales (Port Jackson. AM U33 Polıclinum nigrum ident. Herdman, Herdman 1899).
Descrapion
Extfrnal. Appearancl. The newly recorded colony from Batcman's Bay is robust, forming a smooth. flat sheet, up to 2 cr thick, completely investing a large specimen of Herdmania momus, In prescrvative the surface layer of test is purple fading to a cloudy, white translucence toward the
hase. The purple is contained in spherical, fusiform and dendritic cells. The colony from Port Jackson is lumpy and potato-shaped, with clouds of blackblue pigment in the surface test (after 8 decades in alcohol preservative).

Internal. Structure: Zooids open separately onto the surface of the colony, and are 6 mm long when moderately contracted, with the thorax from one-third to one-half of the total length. Thoracic muscles are strong, with about 16 longitudinal bands down each side, continuing along each side of the abdomen. They converge into a pointed projection on each side of the posterior end of the abdomen. There are 3 rows of about 20 long. thin stigmata. The stomach is smooth. A short duodenal area and an oval postcrior stomach occur in the descending limb of the gut loop. The testis follicles are relatively large and a group of one large and 3 or 4 small oocytes lie in the gut loop. The vas deferens is conspicuous and filled with sperm in both the newly recorded specimens. collected in November and September respectively. Each has one large embryo and 2 small, non-fertile ova in a hrood pouch attached to the postero-dorsal corner of the thorax and bent up against its dorsal border.

The larval trunk is 2 mm long and almost spherical. The tail is wound only halfway around it. Larvae are retained in the brood pouch for a long time - being still there when the tail is withdrawn into the haemocoel and resorbed and when the adult organs are well developed. The oozooid is restricted to the posterior two-thirds of the larval trunk, which is separated from the adhesive apparatus contained in the anterior third hy a waist-like constriction. However the test maintains the almost spherical shape of the trunk and is not constricted at this point. Past the waist, the larval ectoderm flares out around the 2 very long, narrow, vertical bands of adhesive cells depressed into the larval cpidermis along the anterior mid-line. Most, but not all, specimens have a third, short, patch of adhesive cells, similarly depressed into the epidermis, between the 2 long bands. The whole of the anterior part of the larval trunk (with the adhesive organs) is surrounded by a band (4 or 5 deep) of fine, straight, slightly diverging, spikey tentacle-like projections that arise from the larval ectoderm just where it begins to flare. These continue through the thick larval test to its outer surface. Also, about 7 short, rather irrcgular ectodermal ampullae on each side project from around the waist (behind the base of the band of tentacle-like spikes). However, these are not always present - a number of well advanced larvae were found without any ectod-

Fici, 33, Sigillinu nigre: a,b, pooids (AM Y220א, holotype AM U33): c.d. larva (AM Y220x) Scales: a,b. Imm; c, d .0 .5 mm .
ermal ampullae. As in the larvae of S. fantasiana and S. digituta. the endostyle of the oozooid is vertical. There is dark pigment in the larval haemocoel, hut not in the test.

Remarks The species ohviously is related to S. famasiana, being distinguished from it only by its larger and more robust colony and pooids, and especially by its much larger larvae and the absence of the regular paired ectodermal ampullae found in S.fanrasiana. Ctearly these large, viviparous larvae, probably without a frce-swimming phase. would limit gene flow and contribute to isolation between New South Wales and southern Australian populations.

Sigillina digitata (Millar, 1962) from South Africa has a similar though even larger (4 to 4.5 mm long) larval trunk than the prescnt species (see Millar 1964). Further, the anterior end of the trunk has a similar arrangement of adhesive organs and
ectodermal armpullue as S. migra, although the ectodermal ampullae are fonger in the South Atricun species. Long ectodermal spikes found in both S. nigra and S. fantasiana are not recorded for the African species. However, the laveat of So digitata are so large it is possible they wore cxamined without staining and these processes may have been overlooked.

Millar (1964) speculates that the large embryo is contained in an cxpanded atrial cavity. However, in his specimen the brood pouch expands from the posterior end of the thorax, ats in S. nigra. causing the thorax to be tilted at right angles to its nommal oricntation (sec Mitlar 1964. p. 164).

Sigillina nigra and 5. fantasiana are the only species in this genus to have thin vascular stotons on which muscle fibres have not been detected. It is significant that the thick (5107 cm) colonies
of S. digitata have zooids with conspicuous long vascular stolons with muscle fibres on them as in other species of Sigillina.

Millar (1964) observed similarities between the larvae of $H_{1} p o d i s t o m a$ vastum and H. deerratum, and S. fontasiana. Larvac of the prescnt species differ from S. fantasiana only in their larger size. They dilfer from those of Hopodistoma in having the adhesive apparatus separated from the posterior end of the larval trunk by a waist rather than being on a frontal plate connected to the posterior oozooid by a ventral stalk: and in having a band of spike-like, anterior ectodermal processes rather than a single ring of long, digitiform processes around the adhesive organs.

Herdman (1899) in his original description of the present species remarked on the long, narrow stigmata and the gonads in the gut loop (albeit spilling out behind it).

Sigillina signifera (Sluiter, 1909)
(Fig. 34. Plate 8c,d)
Polvethor signiferus Sluiter, 1909, p. 5.
Sicozoa sedens Sluiter, 1909, p. 34.
Eudistoma viridis Tokioka, 1955b, p. 49.
Eudistoma viride: Tokioka, 1967a, p. 122. Millar, 1975. p. 220. Not Nishikawa, 1984, p. 118.

DLSIRIBEILON

Nru Ricorbs. Western Australia (Rowley Shoals. WAM 999.83). Queensland (Swain Reefs, QM G28056 GH 2810 CH 2688 GH 3805 ; lizard 1., QM (88595 Gll902 4 Gl2739 GH322 GH3827 GH4096 100 GH4946: MaeGillivray's Reef. QM GH4091; Cape Flattery. QM G11905: Briomarl Reef. QM GH278). Philippines (QM G12755 GH41। GH451).

Privioust Recorimo Palau Is (Tokioka 1955b. 1967a). Indonesia (ZMA TU808.I leetotype Polycitor signiferus Sluiter 1909).

The speeies is common at shallow, sub-tidal depths in the tropieal western Pacific. It is lound amongst coralline algae and other weeds on hard substrates on undersides or vertieal surfaces near reef edges and on the reef slope from just below low tide level down to 5 m . It flourishes on the walls of ehannels and other locations where the eurrent llow is fast, and where the flat, eompact upper surface created by the tightly packed lobes of the colonies is advantageous.

Descriphon

Extirnat Appearanct. Colonies appear as transparent bluish-green or greenish-black mats. up to 1.5 cm thick, covering cxtensive arcas. Closer examination shows these mats consist of tightly packed, separate cushion-, wedge- or mushroomshaped, flat-topped lobes, tapering to the base which somctimes has root-like projections that help to anchor the colony. Lobes are either attached separately to the substrate or to common
basal test. They vary in diameter from about 0.5 cm to 3 cm . Some of the more extensive plates are attached to the substrate only here and there, where the basal test grows down to form a short. irregular attachment process. Colonies are usually rcadily dislodged. Zooids are not crowded and can be seen opening onto the flat upper surface. The test is pale and transparent in living colonies while zooids themselves are often dark blackishblue to bright green. Zooids become blackishgreen in preservativc. Green cells are concentrated anteriorly, especially in a ring around the base of the branchial siphon and in 2 symmetrical arcs, one on cach side, curving down the body wall from the intersiphonal space, and in longitudinal lines on the abdomen and posterior abdominal process where they appear to be associated with the muscles. Possibly contraction of the muscles concentrates these pigment particles making them appear directly assoctated with the muscles. There also are some brownish-yellow and minute green pigment particles in the test of preserved specimens.

Internal. Structere: The thorax and abdomen together are 3 to 5 mm long when contracted. In additton there is a broad postertor abdominal vascular process onto which the strong longitudinal muscles of the body wall extend to terminate abruptly at its posterior end, just before it divides into 2 or 3 short, terminal branches. About 25 longitudinal muscles are on the thorax. About 30 stigmata are in the sccond and third rows, with more in the first row, which inclines anteriorly along each side of the mid-dorsal line as in Eudistoma. Fairly extensive unperforated areas arc both anterior and posterior to the stigmata.

The gut loop is short, the abdomen being only about the same length as the thorax. The stomach is spherical and smooth, about halfway down the abdomen. There is also a small posterior stomach before the tube expands into the rectum in the pole ol the gut loop. Gonads, in the loop of the gut, consist of a conspicuous group of male follicles and an inconspicuous ovary. A large, tailed embryo is in the brood pouch constricted off from the postero-dorsal corner of the thorax in specimens collected in April (QM Gl 1904), late June (QM GH4096) and December (QM GH4946) from Lizard 1., and in August (QM G11805) from Cape Flattery. Specimens from the Swain Reefs had tailed embryos in July (QM GH2810) and in January (QM GH2806).

Larvae are large, with a larval trunk about 3.3 mm long and a tail about the same length. Dark pigment particles occur in the larval test and an ocellus and otolith in the cerebral vesicle.

 (88595), d, extended monid (QM GH4099). e. thorak showng colour pattern (lectmype 7MA Tl808.1): f. taria (QM (i8595). Scales: a, 5mm; b, Icmices, 1 mm : I. 0.5 mm .

Two large adhesive organs are in the mid-line at the anterior end of the body. They consist of a long narrow strip of secretory cells that arise from the base of narrow depressions. and which, when the larva is mature are produced forwards on short stalks as in S gramdissima n.sp. Three large. forward-projecting, balloon-like ectodermal ampullae develop from each side of the trunk just posterior to the base of the adhesive organs.

Rimaros. Although the species has all of the characteristics of the genus wellexpressed. certain aspects of its morplology separate it from other species. Thesc are the unique, flat-topped lobes, sometimes small and containing relatively few zooids; zooid openings on the flat upper surface; the dark colour of the zooids: and the relatively large numbers of stigmata in each row. The large larvac resemble those in the cyanea group. and in particular S australis, which has 2 long adhesive organs and similar ectodermal ampullac to those in the present species. Zooids of this species also resemble those ol S. cyaneo and S. australis in lacking transverse muscles on the thorax.

The lectotype (ZMA rUxo8.1) still retains the concentrations of dark pigment cells illustrated by Sluiter (1909, pl. 1. lig. 2). These occul in many of the living as well as the preserved specimens.

Colonies of the present species resemble those ol' some Eudistoma. However. Endistoma have more and smaller gooids than the prenent species. and never have a brood pouch nor a long posterior ahdominal stoton. Eudishoma viride: Nishikawa. 1984 from the western Paclice with dark green test and 'roundish or flat and investing colonies" (Nishikawa 1984. p. 118), and only aceasionally with a posterior abdominal stolon, are unlikely to be this species, which never has either dark green test or flat colonies.

Genus Polydistoma n.gen.

Type species: Polydisfoma fungiforme n.sp.
Zooids of this genus have 5 rows of stigmata. open by a long, posteriorly directed atrial siphon onto the upper surface of the rooid-hearing part of the colony while the branchial apertures all open
onto the under surface, and have a long posterior abdominal proeess that extends into the basal test or stalk of the colony. Fine longitudinal muscles are present on the thorax and these continuc onto the abdomen and posterior abdominal process. There are 3 circles of branchial tentacles. The stomach is small, with a smooth surface, and the gut loop is short and horizontal.

The method of vegctative replieation is not known, although in one species new vegetative zooids are seen being added to the system at the top of the stalk as in Sigillina. The assignation of the genus to the family Holozoidae is indieated by its small zooids, short gut loop, arrangement of branchial tentacles, long and conspicuous vaseular process, and general resemblance to Hıpodistoma. Further data on the method of replication is needed to eonfirm this affinity.

Embryos are in the available colonies of one of the species only, viz. Polydistoma fungiforme n.sp. They are large and probably rupture directly from the abdomen to ineubate in the test as they do in Hypodistoma (see discussion on phylogeny of Holozoidae, above). The zooids of Hypodistoma are similar with small and horizontal gut loops, and long, posteriorly dirccted atrial siphons (although these open into common cloacal spaces rather than directly to the exterior as they do in the present genus). Pobldistoma also differs from Hypodistoma in its posterior abdominal process whieh does not appear to have a septum, and its 5 rather than 3 rows of stigmata.

There are two recognised species in this genus, both from the southern half of western Australia. They differ from one another in the shape of the colony and in the number of stigmata in the branchial sac.

Polydistoma fungiforme n.sp.

(Fig. 35)

Distribution

Trpi localry: Western Australia (about 27 km W of Cliff Head, Dongara, $29^{\circ} 30^{\circ} \mathrm{S} 114^{\circ} 41.3^{\prime} \mathrm{E}$, to $29^{\circ} 31.7^{\prime} \mathrm{S}$ $114^{\circ} 42^{\prime} \mathrm{E}, 44 \mathrm{~m}$. MV Sprightly 17.2.76, pipe dredge, holotype W \mathcal{W} 881.83: about 26 km SW of Dongara, $29^{\circ} 23^{\prime} \mathrm{S} 114^{\circ} 42^{\prime} \mathrm{E}$ to $29^{\circ} 24^{\prime} \mathrm{S}$ 114 ${ }^{\circ} 42^{\prime} \mathrm{E}$. $33 \mathrm{~m}, 17.2 .76$, paratypes WAM 880.83 QM GH2H/I).

Description

External Appearance: The colony consists of an irregularly branched eylindrical stalk (about 2 cm in diameter) with each of the 3 to 6 branches terminating in a zooid-bearing saucer- to trumpetshaped expansion or frond from 3 to 10 cm in diameter. The fronds are thinner around their outer eireumference than in the eentre, where the under surfaec tapers to the stalk. Each frond is
concave on its upper (free) surface. There is no indication of how the colony is fixed - there is no basal stalk and all the terminal branches have zooid-bearing terminal expansions. The long posteriorly projecting atrial siphons open onto the upper concave surface and the branchial apertures are on the under surface. The coneavity is homologous with a cloacal cavity. Zooids are evenly spaced in the terminal fronds, about 2 mm apart. Stalks contain long, parallel vascular proecsses. Smaller zooids are in the centre where the new replicates are moving up into the frond. Larger and older zooids are toward the outer margin.

In preservative colonies are all cream-eoloured with orange pigment partieles around the branchial apertures. Their living colour is not known. The test is firm and translucent.

Iniernal. Structure: Zooids are about 3 mm long. The thorax is longer than the abdomen, the gut loop being horizontally oriented behind the thorax. The 6 -lobed branchial aperture is on a short terminal siphon. The atrial apcrture is on a long, narrow, posteriorly directed siphon from the postero-dorsal corner of the thorax. The atrial siphons of smaller zooids in the central (thickest) part of the colony are long (up to 4 times the length of the zooid). About 30 branchial tentacles lie in 3 cireles at the base of the branchial siphon, the 16 longest being in the posterior circle. Ten fine longitudinal muscle bands on the thorax extend from the branchial siphon and onto the abdomen - where they are inconspicuous. Longitudinal musele bands also extend along the atrial siphon, ineluding a few from the branchial to the atrial aperture along the dorsal border of the body. The neural gland and ganglion are elose together at the anterior end of the body. The opening of the neural gland is a curved slit, obliqucly oriented, and directed anteriorly and to the left. It has a conspicuous tongue-like flap projeeting posteriorly from the right border of the slit. Dorsal languets are rather short, triangular expansions of the transverse vessels where they cross the dorsal mid-line. There are 5 rows each of 15 long, reetangular stigmata, but no parastigmatic vessels.

The oesophagus curves toward the ventral side of the zooid, opening into a small, smooth, spherical stomach with an extremely short suture line. The stomach lies horizontally about halfway across the posterior end of the thorax. A fairly long duodenal area extends posteriorly from the stomach and eurves ventrally before narrowing to a long mid-intestine that forms the pole of the gut loop. The mid-intestine has a posterior

Fici. 35, Polydistoma fungiforme n.gen. n.sp. (holotype WAM 881.83): a, colony; b, zooid; \mathbf{c}, diagram showing position of zooids in colony. Scales: $\mathbf{a}, 2 \mathrm{~cm} ; \mathbf{b}, 1 \mathrm{~mm}$.
stomach expansion about halfway along its length. The rectum curves up to extend horizontally across the posterior end of the thorax, sometimes a little to the left. The distal portion of the rectum opens at the base of the atrial siphon in a two-lipped anus, or occasionally it is found curved over into the proximal part of the siphon. The vascular process is fine and originates from the left side of the gut loop. It has a rounded terminal ampulla. These processes are about 1 mm long in zooids from the periphery of the frond, but they are long, extending parallel to one another down into the stalk in smaller zooids in the centre.

Gonads were not detected in any of the specimens. Large embryos (about 2 mm long) are posterior to the abdomen, probably having
ruptured from the side of the gut loop. Although the tail is differentiated in some, no other structure is discernible.

Remarks: Polydistoma longitube does not have a concavity or other cloacal homologue and, although closely related to the present species, it has a vastly different colony structure. The present species appears unique, and its morphology is striking. Although there is no record of its appearance when living, it is possibly beautiful, with translucent palm-like fronds, in which the zooids are embedded. There is no sign of its point of attachment in the one available colony, but it is not impossible that has broken free - it is not likely to be planktonic.

Polydistoma longitube Kott, 1957
(Fig. 36)
Polycitor longitubis Kott, 1957a, p. 80.
Distribution
New Records: none.
Previousi.y Recorded: Western Australia (? between Cockburn Sound and Albany - AM Y802 Kott 1957a).

Description
External Appearance: Only the holotype colony has so far been collected. It is a fleshy, circular cushion, 2 cm thick and 6 cm in diameter. However, the colony appears flattened, and in life it could have been upright, possibly top-shaped. The centre is firm, gelatinous, zooid-free, and has

Fig. 36, Polydistoma longitube n.gen. (holotype AM 802): a, colony; b, zooid; c, diagram showing position of zooids in colony and vascular stolons reaching down into stalk. Scales: $\mathbf{a}, 1 \mathrm{~cm}, \mathbf{b}, 0.5 \mathrm{~mm}$.
the vancular processes of zooids irregularly .catlered through it. Zooids are in the surfoce layer of test in areas representing abous threc-yuarters of the upper surface of the fatsened custion. Branchas aportures of zooids around the periphery open inte is depression just inside the margin of the upper sufface. and their fone atrial aptions sumelimes extend a considerable distance through the test to open on the sides of the cushion. Fooids are also in rather, thin, irregulan flap. of test that secni to overgrow the surface of the colony to form poekets. The branchial apertures of the pooids in these flaps open on the under surlace of the flap into the space it eneloses; sgainst the surface of the remainder of the colony. The long atrial siphons upen an the ouser surlace of the flaps which develop fiom around the perplery of the colony and grow loward the centre. as well as growing nver toward the periphery from the centre.

Intreval Stracteri Zooids are only about 2 mm long The thorax is longer than the abdumen which is folded in tightly behind the thorax. The long atrial siphon from the postern-dorsal parn of the thoras is up to 1 cm long. however. About 10) fine longitudinal museles oceur on the thotas. and soms extend along the dursal burder of the thoras between the branchial and atrial siphons. There are 6 branchial lobes, but none were detected on the lip of the atrial siphon Twenty stigmata secur in cacle of 5 rows in the branchial sace. athough these were dificule to eonums. "There are no parastigntatic venacls.

The gut is rather volummons, with a krnooth and almost splerical stomach, a long duodenal area, and a long mid-intestine with a pear-shaped posterios stomach about halfway along its length The reetum eurves up against the lelt side of the branchial wall belore turning back: ahruptly so that its distal end is in the base of the atrial siphon. A circle of about 12 pear-shaped male follicles lie in the gut loop. No wary was detected.

A Inng vascular process cxaends from the righo side of the posterior end of the abdomen. and it has a tew fine nusele fibres on it.

Remarks. Deapite the similatity of its zooids 10 those of P.fimgiforme, the present species appears distinct. Polydistoma fungiforme has relatively narrow eylindrical stalks with cireular zooid-bearing terminal lronds that contrast whth the massive central text and thin ircegulan flaps. of rooid-bearing test of the present species

Poldeifor foroms Sluiter. 1909 has a culony that pesembles that ol the present species, and at long atrial siphon from the posterionend uf the thomax

However, it lais surdy 3 tuws of stigmatia and belongs in the new genus Efonsesmate in the Polycilnndac.

Genus Hypodistoma Tokioka. 190,7

Type species Distoma devramm Shliter, 18.45.

Colomes atre massave, sell and sessile. Zonids are small. with long, posteriorly projecting atrial siphoms opening into extensive cloaceal spatcos which separate a basal or central core of lest lrom the nuter, subid-bearing layer. Athial apertures are b-lobed. The abdomen is relatively short, usually shorter than the thomas. Fine longitudinal musele bands on the thoras continue onto the long posieriot abdominal stolents that extend into the central core al fest. On the thorax Iransuerse museles lie bencath the longitudinal ones. There are 3 rows of stymata. without parastigmatic vessels.

Owa probably ate fertilised in the abdomen. Somelimes embryus are incubated free in the tent having detached themselves lrom the abdomen (t/ vaspmo, fl. mirahile); or they develop, one at a time, in a brond pouch attached to the posterodorsal corner of the thonate (H . dectrutum).

Larvale, knawn lot all excent I/. mirabile, atm large and have an unusual fringe of unilorm tentacte-like prosesses around the characteristio adhesive organs. The adhesive organs ure depressed into al Iromal plate which is joined to the posicrios half ol the larval trunk by a ventral stolon.

The similwity between the larvac of this genms and those of Sigillinu may he unly upparent. associated with their borge size. The adhesive organs ane large and depressed anto the ectoderm in hoth species. However, in Sigillina a waiss separates the anterior athesive fegion of the larval trunk from the posterior half with it developing blastosooid. while in Hypodstome the adhesive organs are on a lrontal plate that is joined to the posterior part of the larval trunk by o ventral stulon. The spike-like processes that radiate out through the tesi liom the anterior pat of the barval epidermis in Sigillima fantariama and related apecies may be homologues of the ring of tentaclelike processes that surround the adhesve organt in Itypodestome - bus that is not certain. The presence of 3 rows of stignatis, in Hyperfistoma and Sigillimo could be a convergent character, ans suodeds of Publedistomos negen. with mote tows of stigmalta, are otherwise more lake the ronde al Hyposhistomes than Slelltinu. Hepodivommalso resembles the sew genus Polpolistoma in that forilisation is probubly at the base of the oviduer.
TABLE 4. Summary of Characters of the Species of Hypodistoma Recorded from Australia

Species	'Biogeographic description	2Range around Australia	Colony shape	Systems	Larval trunk (length, mm)	Incubation of embryos
H. mirabile	A,te	South Australia	irregular cushion	numerous scatered cloacal apertures single terminal cloacal aperture	? deerratum Is-Abrolhos	WP,tr

the embryos separating from the abdomen and developing in the test (see discussion on Holozoidae, above).

Hypodistoma vastum: Tokioka, 1967a was thought a synonym of H. vastum (Millar, 1962). However, Tokioka's specimen lacks the large posterior abdominal stolon, has the long zooids characteristic of Polycitoridae and is a junior synonym of Polycitor ianthinus Sluiter, 1909 (see Millar 1975). It has been assigned to the new genus Exostoma in the Polycitoridae (see below).

Hypodistoma is represented by 3 species, H. deeratum from the Philippines to Houtman's Abrolhos on the western coast of Australia and Heron 1. on the eastern coast, H. mirabile from the Great Australian Bight to Western Port (Victoria), and H. vastum Millar, 1962 from South Africa (see also Millar 1963b). It appears an IndoWest Pacific genus, H. vasta and H. mirabile being temperate representatives.

The species are distinguished from one another by differences in colony form, by differences in the size of the larvae, and by differences in brooding of the embryos - H. vastum and H. mirabile have embryos incubating in the test, having separated from the abdomen, while those of H. deerratum move from the abdomen into a narrow-necked thoracic brood pouch.

Hypodistoma vastum (Millar, I962) from South Africa (see also Millar 1963b, 1964) resembles H. deerratum, and its relationship with the latter species is discussed below (see H. deerratum).

Hypodistoma deerratum (Sluiter, 1895)
(Fig. 37. Plate 8e)
Distoma deerrata Sluiter, 1895, p. 167.
Sigillina deerrata: Hastings, 1931, p. 87.
Atapozoa deerrata: Kott, 1967, p. 185; 1972e, p. 44. Hypodistoma deerrata: Millar, 1975, p. 215.
Polycitor coalitus Sluiter, 1909, p. 23.
Sigillina (Polycitor) coalita: Michaelsen, 1930, p. 484.
Distribution
New Records: Western Australia (Port Hedland, WAM 995.83 997.83; Cape Preston, WAM 791.83; Montebello ls WAM 789.83 998.83; Dampier Archipelago, WAM 996.83; Houtman's Abrolhos, WAM 788.83 790.83). Queensland (Heron I., QM GH1383; Abbot Point, QM GH706 GH729; Townsville, QM G8590; Cairns, QM GH4095; Lizard I., QM G10153, AM Y2134 Stanley Reef, QM GH2351; Cape Tribulation, QM GH781, AM Y2140; Cape Kimberley, QM GH4092; Princess Charlotte Bay, QM GH4094; Bathurst Head, QM GH4093; Thursday $\mathrm{I}_{\text {L }}, \mathrm{QM}$ G9809-11 GH301; Murray 1., QM GH301). Northern Territory (Darwin, QM GH 4225).

Previously Recorded: Queensland (Low is Hastings 1931; Thursday I., Torres Strait - Sluiter

FIG. 37, Hypodistoma deerratum: a. colony (QM GH2354); b, zooid (QM G10153); c, larva (WAM 791.83). Scales: a, $1 \mathrm{~cm} ; \mathbf{b}, 1 \mathrm{~mm} ; \mathbf{c}, 0.1 \mathrm{~mm}$.
1895). Northern Territory (Gulf of Carpentaria - Kott 1966, 1972e). Philippines (Millar 1975)
The species has been recorded down to 80 m . 1t is tropical, extending south only to Houtman's Abrolhos and Heron I. - the southern extent of the coralline regions on the western and eastern coasts of Australia, respectively.

Description

External Appearance: Colonies are large (up to about 15 cm high and 8 cm diameter) upright and more or less flask-shaped, narrowing to a firm base and often narrowing terminally as well. A large, often terminal, cloacal aperture, surrounded by thin zooid-free test, has a smooth rim and protrudes from the upper surface. The firm basal test continues up into the centre of the colony forming a firm core. The outer layer of zooidbearing test, which often continues above the central test core to enclose a central cavity in the upper part of the colony, is soft, irregular and complex, being divided by deep furrows that separate the surface into lobes and ridges. It is penetrated by large cloacal spaces that partially
separate the zooid-bearing layer from the central core of firm test. Zooids are crowded in circular groups beneath the outer surface of the test as well as in the base of the furrows and clefts in the surface. Branchial apertures open to the surface where the zooids are located. Atrial apertures are on long, tubular siphons that open into the large cloacal spaces behind the zooids. The circular areas containing the zooids often protrude as shallow mounds from the surface of the colony.

In preservative colonies are rather dirty beige, pink or purple, sometimes with brown flecks. Living colonies have been described as 'grey with yellow' and 'purple variegated'.

Internal Structure: Zooids are small, about 3 mm long, excluding the siphons. The branchial siphon is sometimes as long as the rest of the zooid. The atrial siphon, projecting posteriorly from the posterior end of the dorsal border of the thorax, is at least as long as the branchial siphon, but often it is longer. Both apertures have 6 small lobes around their rims. A long, narrow posterior
abdeminal stolon exteudn fom the posterior end of the uhdomen into the ecaral best cone of the colony. The thorax has siremlar musele fithres forming in itmost continuous coat around its posterion two-thirds. The siphons are also surounded with circular muscles. longitudinal muscle bunds from each siphon extend silung the Itngth of the abdomen. About oline musele fïhres are on the pusterior abdominal stolon.

The branchial sac has 3 rows each al 10 long stigmata. A wide expinse of unperforated pharyngeal watl lies anterior to the stigmata and another less wide is at the posterior end al the pharyns. The abdomen is shorter than the thorax and the gut loop tight and rather narrow. The smatl, spherical stomach is jn the posterior third of the descending loon. 'Whus, the oesophagus is longer than it usuilly is in Sigillina. There is a small, ovial, posterior stomach in the deseending limb belore the gllt expands into the rectum. Conads, in the sabdomen. consiat of a smatl group of textis lollielen, and usually one large ovam. Embryos develop, one at a time, in the brood pouch separated lrom the postero-dorsal corner of the thorax by a narrow neek. Tniled larvae are in the broud puach in sume specimens taken from Cape Preston in December (WAM 791.83). Irum Lirard I, in Novemher (QM GilU153), Irom uff Cains in February (QM G4095), and Irom uft Cape lithulation (QM GH781) and Cape Kimberley (QM (iH4092) in Septenther.

The larval trunk is more or less spherical, 0.8 mm in diameter The tail is wound three-quiterers of the way around the trunk. Most of the larval trunk is accupied by the developing adull organs, via. the pharyn. with its 3 rows of stigmata and the developing gut loop. The three indhesive organs are in the median vertieal line at the anterior end of the trunk. I'hey are coarricd on a stalked fromal plate that extends dorsally lrom the ventral part of the anterior end of the oorooid. Each consishs of a central column of adhesive cells rising from the base al a concavity in the epudermis of the foutal plate. There is a large ocellus und an otolith in the cerebral vesicle. A fringe al evenly spaced, parallel. forward-projecting. fine rentacle-like projections of uniform length encircle the frombal plate reathing from the base of the adlesive organs (i) the surlites of the test,

Remarks: The South Alrican Mupodistomo lustrm (Millar, 1962) is distinguixhed Irom the present species niainly by its larger larva (the larval trunk heing 1.9 mm Iong). Ihe cembryo apparently separates from the abdomen and develops liree in the test rather than in a hrood pouch attached to the thorad (Millar 19636). Hypodistoma
mirahile is distinguished by its custion-like rathe Hatn upright colonies. the longotudinal ruteses on its surface. jts longer (7 mm) 7owids and litite /l. wastum) the absence al a thoracic broud pouch.

Hypodistoma mirablle (Kott. 1072)
(Fige 3R I'late 81 1)
Atuphaza mirahills Kot. 1972b. p. 168: 1976. p. 56.

Nrw Krionang south Australiat (Citene Australian
 H750).

Prowntaly Recororos Somth Alstralia (Great Ausuatian Right - Koll 1972b) Victorla (Western Poun MV F53sis Roti 14701.
Ihe specese has been taken at depita from 7 io tron otten in cave: where there is xtrong water movement

Description

Exilenal Ampeakanct: Colonies are large, irregular, heshy masses, with dark ridger atong the surface and deep furrows betseen them. liurronss sometimes cominue into eavilies. These are pockets in the colony a continuation of the outer surface which has become complex owing to its folding. Branchial apertures of soovids open all over the ouler surface and into these pockets. Common doacal apertures are large and compicuous and several nceur along the ridges. Common chacal cavities are heneath the rather thin layers of rooid-beating tese in the furrows and radges of the outer surlate, and lining the pockess in the colony. The whole enlany is traversed by spaces, cither pochets in the test or common cloacal cavities.

Living colonies are pinkisll herge with dark bown along the ridges which persists in the preserved material.

Internal Strempra. Zooids are ouly aboul 3 man long, with the abdomen only whout hatl the length of the thorax. 'The hranchat aperlure is on a short siphon. The atrial siphon is long. projecting pusteriolly from the posterior half of the dorsal border of the thoras in upen inte the cloacal cavities bencath the 200id-bearing layer of test. The rims of buth the branchial and attial apertures each have 6 lobes. Ten line longitudinal muscles on the thorax extiond along the abdomen and in a band along each side of the posterior abdominal stolon. A layer of line transterse muscles surrounds the posterior two-thirds of the thorax. Circulas museles are around the branchia! siphon and atong the length of the atrial siphon. The branchial sac has 12 long elliptical stigmata in each of the 3 rows. The unperforated part of the phatrynges! wall intenor to the stigmata is long, escopying almost the whole anterior hall'
of the pharynx. A shorter unperforated area is it the posterior end.

The gut forms a narrow light loop, with the small, smooth stomach about halfway down the abdomen, and small posterior stomach also in the descending limb of the gut. The rectum extends from the pole of the gut loop and curves over into the proximal part of the atrial siphon. Gunads

1.16. 38, /1!pedistuma mirabile 1QM Gill2379): zooid. Scalc; 0.5mm.
are present in the gut loop. They are mature in colonies collected in April Irom Western Port (Kott 1976). but not in those from Elliston Bay collected in May (Kout 1972b), nor the newly recorded ones from Ward J. collected in April(QM GH2378). The Victorian materiat has a large ovum attached to the side of the gut loop. Larvae are not known for this species.

Remarks. The species, with posteriorly directed atrial siphon opening into cloacal eavities beneath the zooid layers, resembles H. deerranum and H. vastum (from South Africa) although the zooids are smaller. Hipodistomu vostum has large embryos developing frec in the test. although Millar (1963b) did not know how they got there. The large ovum attached to the abdominal loop in colonies of the present species from Western Port suggests that, instead of moving up the oviduct to develop in the hrood pouch attached to the postero-dorsal eorner of the thorax, the ova of this species are fertilised and initially incubated at the base of the oviduct. They could subsequently break away from the zooid to complate development in the test, as do the single embryos in the family Didemnidae and possibly in Polpdistoma and certain Distuplia.

Genus Distaplia Della Valle, 1881
 (nomen conservandum)

Type species: Holozoa evlindrica Lesson, 1830
The genus is characterised hy its relatively short zooids each with a 6 -lobed branchial aperture, and a wide atrial upening with the upper border produced into a large anterior lip. Zooids are arranged regularly in one or more sircular, or oval, or long radiating, double row cloacal systems. Colonies are fleshy sheets, cushion-like or stalked. The test often has a spongy consistency. There always are 4 rows of long stigmata, usually crossed hy a fine parastigmatic vessel. The stigmata in each row are progressively reduced in length loward the ventral line, leaving three small triangles of unperforated pharyngeal wall bounded by the ventral ends of rows of stigmata and the endostyle. Pointed dorsal langucts are on the transverse vessels on the left of the dorsal sinus. The stomach wall is often folded. A posterior stomach is absent. Often (but not always) a large spherical to oval gustric reservoir is in the gut loop. The junction between the mid-intestine and the rectum is always well defined and offen has a distinet rectal valve. Gonads, consisting of a cluster of large testis follicles and a small group of ova, are either in the gut loop. or in a narrowneeked sac projecting from it. A conspicuous
vascular process from the left side of the posterior end of the abdiomen extends inion the base of contre of the colony and down into the stalk (when ore is present). Fine muscle bands extend obliquely from the tranchial aperture and the intersiphonal space toward the postero-dorsal corner of the thorax, They may sometimes extend onto the abdomen but are inconspicuous and seldom detected. Muscle fibres have not been detected on the vascular process. Dorsal muscles in the intersiphonal region curve out around the anterior alrial lip and extend down each side of the aperture: Ova are fertilised, and embryos are hrooded, in a toop of the distal part of the oviduet that projects into a sac from the postero-dorsal part of the thorax behind the atrial opening. The brood pouch becomes detached from the pooid to lie frec in the test. Embryos probably are freed from the surface of the colony by rupture of the test.

Known larvae are all similar. They are large, with triradially arranged stalked, adhesive organs. The stalks of the adhesive organs develop large, rounded ampullary swellings at their base. They have a protruding axial cone of columnar cells surrounded by a cup-shaped structure consisting of an outer and parietal layer of specialised ectodermal cells. Each axial cone has a hyaline cap. the tip of which projects through an aperture in the larval lest. Adhesive organs conform to those of Distaplia occidentalis Bancroft (see Cloney 1977). These are supponed on a stolon from the posterior end of the ouzooid which persists as a vasculat appendage following metamorphosis. Usually both ncellus and otolah ate io the cercbral vesicle. Adult organs, especially the branctial sac and the gut loon, are well developed and the former is especially large, vecupying about one third of the larval trunk. Larvae are unusual in producing small buds from epicardial tissue at the junction of the oesophagus and pharynx (Berrill 1935b). The larval test contains crowded bladder cells and often pigment particles that obscure the developing organs. Most known species have only one embryo in each brood pouch - although a few species (D. austroliensis. D. muriella $\mathrm{n} . \mathrm{sp}$. and D. violettu n.sp.) have more. Larvae are remarkably similar, with short tails. and large and sometimes almost cigar-shaped trunks containing vegetatively produced buds developed from the epicardial sacs at the posterior end of the pharymx.

The epicardial epithelium constitutes the regenerative tissue (Brier 1948) for replication in the adult. Replication occurs in 2 ways, $4 / 2$, from numerous vegetative stolons (each conlaining a
vestige of the left epicardial sac) isolated from the posterior end of the abdomen, near the vascular appendage; or from the remains of the antetior horns of the epicardial sacs that persist in the test following dissolution of the zooids (Berrill 1935h). Replication is prolific, but less so than in Sycozoa.

Species with several systems have randomly scattered cloacal apertures on the upper surlace of sessile colonies and all around the zooid-bearing head of stalked colonies. Distaplia systemulica Tokioka, 1959 from Japan has a single circular system in each separate lobe of the colony. In others with single systems, viz. Distaplia amsraliensis Brewin, 1953, D. vallii Herdman, 1886 and D. Emithi Abboll and Trason, 1968 from Califormia. zooids are arranged in rows along each side of the long canals that converge to a terminal cloacal aperture thus differing from Sycozoa which have loing parallel canals that terminate around the flat, zooid-free upper surface.

Distuplia is remarkably homogenous and can conlidently be regarded as monophyletic. Within the genus. species parameters are far from resolved. Differences in the colony - from cushion and extensive sheet-fike forms fixed by a large area al the base, to sialked heads - have been regarded as intraspecific by many authors (Michaelsen 1930, Tokiokia 1967a. Millar 1975). However in most of the cases referred to by these authors, associated differences in the zooids have heen detected that suggest genetic isolation and it is probable the colony form is a more reliable indicator of species identity than formerly thoughi.

In this study characters used to define a species are colony form (either sheet-like, sessile cushions or stalked), position of gonads (cither in the gut topp or in a sac-like posterior abdomen), atrangement of the zooids (either around, or in donble rows radiating from, the cloacal apertures: or a combination of both). There are also interspecific differences in the ratio of longitudinal tharacic muscles (from the branchial siphons) to oblique muscles (from the ventral mid-lime), the shape of the stomach and its orientation. the condition of the stomach wall (either smooth, papillated, or folded, or with the internal lining raised into longitudinal ridges or relicutations), the number of testis follicles, and the number of embryos in the stalked brood pouch.

Remarkably little intraspecific variation occurs in the numbers of stigmata per row rarely more than 4, and usuatiy lewer, being involved, Further the characteristic number is present in all but the smallest vegetative fooids. Thereatre one or 2 more present on one side of the branchial sae (usually. the left) than the other, and usually 2 less in the
posterior row than the anterior 3 rows. Previously reported intraspecilic variations and ranges in the number of stignata probably have resulted Irom difficulties in counting the stigmata of contracted thoraces. The major interspecific differences in the larvae are their size and the development of the ampullae around the base of the stalked adhesive organs.

The large, short-tailed larvae hrooded for a long time in the parent colony, may not be widely dispersed. This could be the reason for the isolation that has resulted in the latge numbers al apparently indigenous species of limited ranges kllown from tropical as well as iemperate seas. In addition to the 12 indigenous Australian species reported on befow, there are 4 indigenous Japanese species (Tokioka 1963), 3 indigenous South African species (Millar 1962), 3 indigenous New \%ealand species (Brewin 1956b) and 2 specics Lrom the western Pacific (D. vallii Herdman, 1886 and J. mikropnoa Sluiter, 1909).

Tropical species are few (D. cuscina n.sp.. D. violetha n.sp.. D. vallii and D. mikropnoa trom the Pacilic; D. stylifera from the Indian Ocean). lic last 3 have wide geographic ranges.

Recordferfrom Austualia

1. Gonads in a sac posterior to abdomen.... 2 Gonads not in a sac posterior to abdomen.
2. Systems one per stalked head of colony....

Systems more than one per stalked head of colony 3
3. Stomach with external folds...............

Stomach without external folds
1). Prubfera n.sp.
\&. Testis follicles short, bunched \qquad Testes follicles long, parallel.

> D. violetha n.sp.
5. Colonies usually stalked; parastigmatic vessels usually absent D. stlifero Colonics not stalked; parastigmatic vessels present................. . D. Tokioka n.sp.
(i. Stomach with external folds. 7 Stomach without external folds........... 8
7. Stigmata >12 per row........... D. dahika Stigmata not >12 per row D. pallidos
8. Colonies rope-like D. retmacklata n.sp. Colonies not rope-like. 9
9. Systems with radiating double tows of cooids: ocsophagus constricted distilly
C) murifllan n.sp

Systems oval or circular: oesophagus not constricted distally
. 10
10. Stomach with conspicuous Jongitudinal ridges internally D. cuscima n.sp.
Stomach without conspicuous Jongitudinal ridges internally 11
11. Thonacte muscles mosth longitudinal......
. I. resina II.ap.

Thoracic muscles not mostly longitudinal .

$$
\text { } 12
$$

12. Stigmata 22 or more per row 17

Stigmata less than 22 per rou. ... D. brodis
13. LaTval trunk $>2 \mathrm{~mm}$: thoracic muscles longitudinal and oblique.
....................... D. Norida n.sp.
Laival irunk <2mm; thoracic museles mostly abisque D. racemosa т.s.

Species recorded from adjacent areas, but now recorded from Australia are:
Distaplia capensis Michatlsen. 1934 from South Africa has similar colonies 10 D . violetlo n.sp. but its gonads are in the sbdomen. Its rouids. with stomach folds. revemble those of D. pallida (see also Millar 1962. 1964).
Distaplia durbanensis Millar. 1964 from Suuth Alrica is unique in having an ahdominal brood pouch and a transverse atrial opening acruss the posterior third of the dorsal surface. It has a stalked colony and a rounded almost spheical head. Its stomach has internal papillatoons sometimes arranged in longitudinal lines as in D. muriella n.sp.. and its gonads are in the gul loop.
Distaplia mikropmoa (Sluiter. 1909) from Induntsia, forms a massive colony that distinguishow it from the stalked D. stylifera. It also has an anastomosing network of stomach folds risileer than the parallel ones of the latter species.
Distaplia skoogi Michacisen, 1934 (sce also Millar 1962) from South Africa, has small cushionlike colonies with circular systems. Its gonisls are in a pusterior abdominal sac. It lacks truc stomach folds. but otherwise is similar to the South Australian D. rokioka n.sp. The cushimnlike. broadly based specimens assigned by Millar (1975) to D. silifera may be this species (nee Millar [975. fig. 17a) or D. violetra n.sn.
Diseaplia shrljera: Millar. 1975 (part. specimen 21.3.1922 from Tocalf is not eorrectly assigned. The position of the rudimentary ovary projecting from the abdomen, is not an incipisut posterior afdomen but is normal in juvenile vegetative zooids. as is the presence of an atrial siphon Therefore, this specimen could belong to a species in which the gonads are contained

Species	${ }^{1}$ Biogeographic description	${ }^{2}$ Range around Australia	Colony shape	Posterior abdominal sac	Stigmata (per row)	Stomach	Larval trunk (length, mm)	Other
D. australiensis	A,te	Spencer Gulf E. Tasmaina	stalked, head spherical-conical	present	11-13	16 folds	1.5	single system, lobe; long-necked brood pouch
D. stylifera	IWP,tr-te	Broome Heron 1.	"	"	12-18	$\begin{aligned} & 16-20 \\ & \text { folds } \end{aligned}$	1.2	parastigmatic vessels often absent
D. prolifera $\mathrm{n} . \mathrm{sp}$.	A,tr	Port Hedland	stalked, head massive lobed	"	14-18	20 internal ridges	2.2	\cdots
D. violetta n.sp.	WP,tr	Heron I.Townsville	sessile-stalked	"	16-20	$\begin{aligned} & 8-12 \\ & \text { folds } \end{aligned}$	1.6	lobed cloacal apertures
D. tokioka n.sp.	A,te	South Australia	sessile	"	12-16	12 folds	?	"
D. muriella n .sp.	A,te	Swan River	stalked, head spherical-conical	absent	12-16	smooth	1.5	valve at base of oesophagus; up to 6 embryos in brood pouch
D. florida n .sp.	A,te	South Australia Byron Bay	sessile cushion-sheet	"	22-26	"	2.5	numerous larval ampullae; lobed cloacal apertures
D. regina $\mathrm{n} . \mathrm{sp}$.	A,tr	Heron I.	"	"	16-20	"	?	parastigmatic vessels absent; thoracic muscles longitudinal only
D. racemosa n .sp.	A,tr	Arafura Sea	"	"	24-26	"	1.8	test firm
D. cuscina n .sp.	WP,tr	Heron I.	"	"	16-22	16 internal ridges	1.5	-
D. dubia	WP,tr	Lord Howe I.	"	"	12-16	16 folds	?	-
D. pallida n.sp.	A,te	South Australia	"	"	8-12	12 folds	1.3	stomach folds flatten distally, systems irregular, crowded
D. viridis	A,te	SA-Heron I.	"	"	16-20	internal recticulations	1.5	vertical gut loop
D. retinaculata $\mathrm{n} . \mathrm{sp}$.	A,te	South Australia	rope-like	"	18-20	"	?	no thoracic brood pouch

${ }^{1}$ A, indigenous; WP, western Pacific; IWP, Indo-West Pacific; tr, tropical; te, temperate. ${ }^{2}$ Range given anticlockwise around the continent.
in the gut loop. It resembles the new speeies D. racemosa n.sp. from northern Australia but is distinguished from it by the form of the colony - Millar's specimen consisting of separate lobes with a single system per head, It appears similar to D. systematica Tokioka, 1958 from Sirahama (Japan), Millar's drawing (Millar 1975, fig. 18) showing the preponderance of transverse museles charaeteristic of the Japanese species. Distaplia vallii Herdman from the Philippines has colonies consisting of similar stalked heads, but it has double row systems.
Distaplia tahihuero Monniot and Monniot, 1987 from Tahiti has colonies closely resembling those of D. cuscina n.sp. both in form and in colour - both living and in preservative. Zooids differ only in the fewer testis follicles - 6 to 8 in D. cuscina and 3 or 4 in the specimen from Tahiti. This may indicate no more than a population difference.
Distaplia vallii Herdman, 1886 from the Philippines (not Holozoa vallii: Van Name, $1918<$ D. cuscina n.sp.) has numerous stalked heads from a common base, each head a single system with double rows of zooids converging to the terminal eloacal aperture. The colonies most resemble those of D. australiensis, but the gonads of the Philippine speeimen are in the gut loop rather than in a posterior abdominal sac.

Distaplia australiensis Brewin, 1953
(Fig. 39. Plate 9a)
Distaplia australiensis Brewin, 1953, p.61. Kott 1957a, p.95; 1975, p.1.

Distribution
Nfw Recorbs: South Australia (Spencer Gulf, QM GH2288; St Vincent Gulf, QM G10126). Tasmania (d’Entrecasteaux Channel, TM D251 D2021; Huon Channel, TM D1850). Victoria (Bass Strait, QM G11871). Queensland (Calliope River, QM GH2158). Previousiy Recorded: South Australia (Spencer Gulf SAM E1993, QM G9259 Kott 1975). Tasmania (S. Tasmania - AM U384 Brewin 1953, Kott 1957a; d'Entrecasteaux Channel - Kott 1957a).

The maximum depth at which the species has been taken is 50 m . Most records of this species are from a relatively small area between Spencer Gulf and the eastern coast of Tasmania. The record from Gladstone is anomalous. It cither represents an isolated population of this species, or it indicates inadequate sampling of a species with a continuous range between tropical and temperate waters.

Description

External Aplearance: Colonies consist of a number (up to 10) of spherical to conical heads, up to 1.5 em in diameter, on fleshy eylindrieal stalks
longer than the head and about half its diameter. Stalks are joined to one another basally and to a mat of test. Zooids are arranged in double rows radiating from a large terminal cloacal aperture in the centre of the upper surface of the head. Intervals between the double rows of zooids are where the cloacal canals extend bencath the surface test from the terminal cloacal cavity down the sides of the colony. The sides of the zooids away from the canals are close to the zooids in the adjacent row. The test has a spongy consistency.

Living colonies are blue-grey. In recently preserved material colonies are greenish-blue, the test containing inky-blue partieles that eolour the preservative, Later this colour is lost and the eolonies are beige.

Internal Siructure: Zooids are small, the thorax and abdomen together being about 4 mm long, and the sac-like posterior abdomen attached to the right side of the posterior end of the abdomen is, when the gonads it contains are mature, only about half that length. About 30 fine musele bands are on the thorax, about half extending obliquely from the endostyle toward the posterior end of the pharynx. Muscles were not detected on the abdomen. The dorsal muscles cross the mid-dorsal line around the top of the atrial opening where they curve out into the pointed lip that is produced from the upper border of the opening. They then pass down along each side of the opening. These muscles are crossed by strong bands from the branchial aperture extending along the centre of the atrial lip; and a few extend from the borders of the atrial aperture transversely across the sides of the body. The at rial opening is asymmetrical, one side of the aperture exposing more of the branchial sae than the other. The asymmetry is dependent on the side of the cloacal canal on which the zooid is located, the side facing the cloacal canal being the one on which the branehial sae is exposed. There are 13 stigmata per row in the 3 anterior rows and 12 in the posterior rows on the left, and 12 and 11 respectively on the right. A fine parastigmatic vessel erosses each row of stigmata.

The stomach, about halfway down the abdomen, is short on its right side where the oesophageal opening is located, while the left side is long and widely curved. The oesophagus bends ventrally to open into the stomach. The stomach wall has about 16 narrow ridges in its internal wall that appear as shallow folds on the surface. They extend from around the oeso phageal opening to the pyloric end. The mid-intestine opens into the rectum near the posterior end of the descending

Fig. 39, Distaplia australiensis. a, colony (QM GH2288): b,c, 700 ids (QM G9259 GH2158); d, larva (QM GH2158). Scales: a, 5 mm : b. 0.5 mm ; c, 1 mm : d 0.25 mm .
limb of the gut loop. There is a conspicuous gastrointestinal reservoir suspended about halfway along the duct between the stomach and the proximal part of the intestine. The specimens from Queensland have about 24 stomach folds.
Gonads are contained in the posterior abdominal sac connected to the right side of the posterior end of the abdomen by a narrow neck. The testis
consists of a barrel-shaped mass of 5 to 6 long follicles joined to the vas deferens at the anterior cnd. A clump of about 5 ova of various sizes are at the posterior end of the testis. Brewin (1953) rccorded specimens collected in September with a single early embryo developing in the brood pouch attached by a long narrow neck to the postero-dorsal part of the thorax just behind the atrial opening. Specimens collected in April (QM G11871), July (TM D1850) and September (QM G10128) had no embryos. Previously recorded specimens from Spencer Gulf colfected in September (Kott 1975) have a single early embryo in each brood pouch, but no tailed larvae. Specimens taken in May from Spencer Gulf (QM GH3288) had up to 3 developing embryos, one at an advanced stage, in the brood pouch. Specimens from the Calliope River collected in October have the characteristic long-necked brood pouches and each contains 3 to 5 developing embryos. The evidence suggests breeding periods in spring and autumn.

The larya has a long trunk (1.5 mm) but the tail reaches only halfway along it. There is an ocellus and otolith. The stout stalks of the adhesive organs expand basally.

Remarks: Re-examination of specimens from Upper Spencer Gulf and d'Entrecasteaux Channel (Brewin 1953 and Kott 1957a, 1975) revealed the numbers of stigmata in each row are as reported above. Further, the numbers of thoracic muscles and stomach folds reported by Kott (1975) for the South Australian material are too low, the actual numbers being in the vicinity of 30 and 16 respectively. The parastigmatic vessels, which were overlooked by Brewin (1953), are always prcsent.

Distaplia australiensis is distinguished from all other Australian species by its long, double rows of zooids radiating from a single, terminal cloacal opening comprising a single system in each stalked hcad. Like D. smithi Abbott and Trason, 1968 from California, it has a number of stalked heads joincd basally to common test. The Australian species has a longitudinally folded stomach in contrast with the areolated stomach surface in the California species.

Distaplia vallii Herdman, 1886, from the Philippines, also has stalked heads arising from a common base, each head consisting of a single system, with double rows of zooids radiating from a terminal common cloaca. It is distinguished from D. custraliensis principally by the absence of a posterior abdomen. The Atlantic species Distaplia bursata (Van Namc, 1921), which Michaelsen (1930) thought to be a synonym of D. stylifera,
has a colony and other characters more closely resembling the present species, although it has shorter stalks and flatter heads.

The specimen from the Calliope River, Gladstone differs from those from southern Australian locations in the greater number of folds on the stomach. On information available the separation of the Gladstone population from the southern Australian ones is not justified although the record from such a widely separated location is surprising.

Distaplia cuscina n.sp.

(Fig. 40)
Holozoa vallii: Van Name, 1918, p. I40.
Distaplia vallii: Millar, 1975, p. 227. Kott, 1981, p. 149.
Distribution
Type Locality: Qucensland (Capricorn Group, Wistari Reef, rubble fauna, low tide, coll. P. Kott 17.6.85, holotype QM GH4381, paratypes QM GH4124).

Furimik Records: Queensland (Capricorn Group, QM GH4120-3 GH4125-6 GH4200).

Prfvioust y Recordfo: Philippines (Van Name 1918. Millar 1975). Fiji (Kott 1981).

Fijian and Australian records are from intertidal locations. Records from the Philippines are from depths to 40 m .

Description

External Appearance: Colonies are soft cushions not more than 5 mm thick. Zooids, opening onto the upper surface of the colony, are arranged in circular systems around central cloacal apertures. Borders of the cloacal apertures do not protrude from the surface of the colony.

The test is soft in smaller colonies, but spongy in larger ones. Living colonies are cloudy rose, soft lilac, having a mixture of dark purple, lavender and white pigment cells in the test. Zooids are white. Freshly prescrved colonics, with indigo pigments cells in the test, are slatc-blue; subsequently they become light green fading to beige.

Inti:rnal Struc"ure: Zooids are small, usually less than 2 mm long, excluding the relatively short, fine vascular appendage. About 20 fine thoracic muscles extend from the endostylc and branchial siphon toward the postero-dorsal corner of the body. Dorsal muscles curve out into the very long atrial tongue before extending posteriorly along each side of the atrial aperturc. Also longitudinal muscles in the atrial tongue cross these dorsal muscles. The tip of the atrial tongue has 3 short lobes that insert into the test around the cloacal aperture. Branchial lobes are only shallow. The usual 4 rows of stigmata are crossed by a fine, often inconspicuous parastigmatic vessel. Some slight variation occurs in the number of stigmata, e.g. 20 to 22 in the three anterior rows
on the left, and 18 to 20 in the posterior row. On the right there are 18 to 20 in the anterior rows, and 16 to 18 in the posterior row.

The gut loop is vertical, the oesophagus relatively long and the more or less elliptical stomach, with ahout 16 fine internal striations or ridges in its glandular wall, is in the posterior third of the abdomen. A distinct rectal valve separates the rectum from the mid-intestine. A conspicuous gastric reservoir is in the gut loop. Mature zooids have a tight circle of 6 to 8 pcar-shaped follicles on the right side of the pole of the gut loop. They converge to the centre of the circle where they join the proximal end of the vas deferens. There is often a small ovum (just posterior to the proximal end of the vas deferens), and frequently it projects from the side of the abdomen.

Specimens collected from the Capricorn Group in March (QM GH4122) and May (QM GH4200) have a single cmbryo in each brood pouch (attached to the postero-dorsal corner of the thorax).

Larvae have a trunk about 1.5 mm long, with the tail wound three-quarters of the way around it. Each of 3 tri-radially arranged adhesive organs with stout stalks has a pair of cctodermal ampullae near its base. An ocellus and an otolith are in the cerebral vesiele. The larval test contains pigment particles and looks frothy owing to the packed bladder cells. This makes it difficult to sec the larval organs.

Remarks. The soft pink-lilac of this species is similar to that of Distaplia violetra n.sp. and the two species are readily confused in the field. However, in the latter species both hranchial and cloacal apertures are much more conspicuous, the colony is thicker and often stalked rather than sessile, and it has purple and some brownish or yellow pigment particles in the test while the present species has purple and lavendar pigment only. Zooids of D. violetta are readily distinguished, being larger, with conspicuous, relatively broad external stomach folds and a posterior abdomen containing the gonads.

The type specimen of Distaplia vallii Herdman. 1886 is from the Philippines. It consists of many stalked heads arising from a common basal stolon. each head consisting of a single system with double rows of zooids converging to a single terminal common cloacal aperture. The colony resembles that of D. australiensis and is different from the colonies of the present species with their several circular systems that formerly were assigned to D. vallii by Van Name (1918), Millar (1975) and Kott (1981). The zooids of Herdman's species are distinguished also by their primarily oblique and

Fig. 40, Distaplia cuscina n.sp.: a,b, zooids (holotype QM GH 4381 GH 4123); c, larva (QM GH 4122). Scales: a,b, $0.5 \mathrm{~mm} ; \mathbf{c}, 0.25 \mathrm{~mm}$.
transverse muscles. The other specimen Herdman assigned to D. vallii is from the Mediterranean and it appears to be distinct from any of the Pacific Ocean species (see Van Name 1918).

Distaplia tahihuero Monniot and Monniot, 1987 from Tahiti closely resembles the present species both in colour and colony form. The zooids of both species are of similar size, have the same number of stigmata per row, and the same internally ridged stomach. The ovum projects from the side of the abdomen in the same way as it often does in this and other species of Distaplia. There are fewer (3 or 4) testis follicles in D. tahiheuro and the larva is smaller than that of the present species.

Kott (1981) suggested the synonymy of Distaplia dubia (Oka, 1927c) with the present species. However, D. dubia has a stomach with external folds that more closely resembles that of D. stylifera than the present species.

Distaplia dubia (Oka, 1927)
(Fig. 4la. Plate 9b)
Leplobotrylloides dubium Oka, 1927c, p. 607.
Distaplia dubia: Tokioka, 1953, p. 206; 1954c, p. 82; 1967c, p. 240.
Not Distaplia aff. dubia: Tokioka, 1967c, p. 240.
Distaplia japonica Tokioka, 1951b, p. 169.
Distribution
Nfw Recorids: New South Wales (Lord Howe I., QM GH52).

Previousty Rfcordfid: Japan (Japan Sea, Seto Naiki Sea, Sagami Bay - Oka 1927c, Tokioka 1951b, 1953. 1954b, 1967c).

Description

External Appearance: The colony forms a fleshy encrusting sheet. The test has a soft, spongy

Fic. 41. Distaplia dubia: a. zooid (QM GH52). Distaplia florida n.sp.: b. colony (QM GH4164): e. zooid (holotype QM GH4103); d, juvenile vegetative zooid (SAM E2039); e, branchial apertures, obscured by their enlarged ventral lobes, surround a lobed common cloacal opening (MV F53292); f, larva (hototype QM (iH4103). Scales, a,e,f, 0.5 mm : b: $1 \mathrm{~cm}:$ c. 1 mm ; d. 0.25 mm .
consistency. Zooids are in eircular systems. In life the present speeimen was blue-grey with orange patches. When first preserved it contained dark pigment cells in the surface, especially in the vicinity of the zooids. However, long-term preservation has left it a dirty beige colour.

Internai Structure. The branchial aperture has 6 shallow lobes. Three tongue-like projections occur on the tip of the long atrial lip. The usual fine longitudinal thoracie museles occur and dorsal
muscles curve out into the atrial tongue. The thorax is about twiee the length of the abdomen.

In the branchial sac 16 stigmata are in the 3 anterior rows on the left and 14 in the posterior row. On the right 14 stigmata are in the anterior rows and 12 in the posterior row. Parastigmatic vessels were not detected, hut it is possible they have been lost or are obseured in these contracted specimens. The oesophagus is fairly long and curves horizontally to enter the obliquely otiented
stomach, which is shorter along its mesial side than along its outer curved surface. The stomach has 16 fine longitudinal folds. Gonads were not detected in this spccimen. It is probable they develop in the gut loop, as a posterior abdominal sac is not present and there would not bc space for one in these relatively thin sheet-like colonies.

Remarks: Although Lord Howe I. is geographically isolated from the Japanese location from which this species has been recorded previously, the specimen is indistinguishable from the Japanese material. Tokioka (1953) described specimens from Japan as greyish-brown, or shades of pink, or dirty greyish-orange and the newly recorded specimen is patterned in grey and orange. The Japanese specimens have 15 to 20 stigmata per row, 16 fine stomach folds can be observed on the outer wall of the stomach, and the test is the same consistency as the present species.

Amongst other species of this genus, its colony most resembles D. cuscina n.sp. However, the latter species has morc stigmata per row, and although its stomach has longitudinal ridges internally, externally it is smooth. Distaplia viridis from South Australia has similar systems, but is distinguished by its more numerous stigmata and smooth stomach. Distaplia pallida n.sp. does have a folded stomach, but the folds are wider than those in the present species and it has more complex cloacal systems and fewer stigmata.

If this Lord Howe 1. specimen is correctly assigned a much wider range is predicted for this species.

Distaplia florida n.sp.

(Fig. 4lb-f. Plate 9c, d)
Dist ribution
TypF L.o'silty: New South Wales (Julian Rocks Bryon Bay, ree[, 10 m , coll. N. Coleman 30.3.75, holotype QM GH4103).

Furimer Ricords: South Ausiralia (Greal Australian Bight SAM E1999 E2039. QM GH4180 GH4184). Tasmania (King 1, MV F53292).

Description

External. Appearance: Colonies form soft, flat cushions about 4 cm in diameter and slightly less than lcm thick. Zooids are in circular systems - in groups of about 8 around each cloacal cavity with its central cloacal opening. Cloacal apertures are conspicuous, each on a protruding siphon that rises from the centre of a depressed area. The border of the aperture is divided into lobes into which the atrial lips of the zooids are inserted. Branchial apertures open around the outer walls of the surface depressions. In the preserved specimens, ventral lobes of each branchial aperture
are long and the openings are directed in toward the cloacal aperture. Systems are evenly spaced, with a small area of zooid free test between them. The test has a spongy consistency. The surface test over each system is extremely thin, and possibly the surface depressions, over the zooids and cloacal cavity, are inflated and raised in life. Free larvae in the holotype colony beneath the surface outside the circles of zooids are probably about to be liberated.

In preservative colonies are grey, beige, or pinkish-cyclamen, cloudy throughout and with red pigment particles and clouds ol white granules in the surface. In life the holotype colony was purple and pink (fide N. Coleman). Colonies from South Australia were orange or dark red with distinct black circles around cloacal apertures (fide S . Shepherd QM GH4164) or very pale pink or cream (SAM E1999).

Internal Structure: Zooids are about 4 mm long, the thorax and abdomen about cqual length when the thorax is relaxed. The branchial aperture has 6 lobes. The atrial aperture is wide, with a pronounced anterior lip and some asymmetry of the opening, depending on the zooid's orientation to the cloacal cavity.

Numerous fine longitudinal and oblique muscle bands occur, the most dorsal curving out into the atrial lip which is sometimes long and pointed. The branchial opening is 6 -lobed. On the left are 24 and 26 long, rectangular stigmata in the posterior and each of the 3 anterior rows. respectively. On the right are 24 stigmata in the anterior 3 rows and 22 in the posterior row. Each row is crossed by a parastigmatic vessel.

The abdomen is narrow, the gut forming a vertical loop. The smooth, kidney-shaped, yellowish stomach lies vertically in the posterior half of the abdomen. The oesophagus is rather long and narrow. A short, broad duodenal area is separated from the rectum by a slight constriction in the posterior end of the descending limb of the gut loop. Gonads are in the gut loop, although neither sex is mature in the type specimen. In the buds scattered randomly in the test between the adult zooids are well-developed testes consisting of a circle of about 12 club-shaped follicles converging into the proximal end of the vas deferens in the centre of the circle.

Larvae, one in each brood pouch, are large, the trunk being 2.5 mm long. The tail is about the samc length as the trunk and, when curved around it, barely reaches the anterior end. In the mature larva the oozooid occupies the posterior end of the trunk. It has a full complement of stigmata with a parastigmatic vessel crossing each
row. There is an ocellus and an otolith in the cerebral vesicle. Five small buds move progressively from the oesophageal region of the oozooid, ventrally and then dorsally around the left side of the middle of the trunk - i.e. around the base of the adhesive apparatus that occupies the anterior half of the trunk. The adhesive apparatus consists of 3 large, anterior stalked adhesive organs, 2 dorsal and one ventral, each consisting of a central cone of columnar cells rising from the base of a relatively shallow epidermal concavity. The base of each of the stalks of the adhesive organs is expanded into about 7 balloonlike elongated ectodermal ampullae.
Remarks: The species resembles the South Australian D. viridis, having similar circular systems, zooids with similar body musculature, a vertical gut loop with a smooth yellowish, kidney shaped stomach, and gonads in the loop of the gut. The present species is distinguished by having larger zooids with more stigmata in each row, a cushion- rather than sheet-like colony and a much larger larval trunk with more elaborate adhesive apparatus, and it lacks the dark pigmentation of D. viridis. Distaplia pallida n.sp. is distinguished by its sheet-like colony, its folded and horizontally oriented stomach, fewer stigmata, more transparent test and small zooids.
The colonies of D. florida rcsemble those of D. tokioka n.sp., as do the circular systems. However the latter species has its gonads in a sac posterior to the abdomen, while those of the present species are in the gut loop.

Distaplia muriella n.sp.

(Fig. 42)

Distribution

Type Locality: Western Australia (Blackwall Reach, Swan River estuary, 20 m muddy bottom, coll. 2.4.60, holotype WAM 135.75; Swan River estuary, Rocky Bay, at edge of channel, coll. WA Naturalists November 9 , paratypes WAM 32.75).

Further Records; Western Australia (Swan River, WAM 1003.83 17.87; Garden Island).

Apart from a single specimen recorded from Garden 1sland, just outside the Swan River estuary, the records of the species are from within the estuary - where apparently it is indigenous. The Swan River estuary in the vicinity of the type locality - Blackwall Reach has a deep pocket of salt water that persists through the winter beneat the fresh water inundations that occur at that time (Spencer 1956). At Rocky Bay, which is on the opposite shore from Blackwall Reach, specimens have been taken from intertidal and shallow water in the summer when the salinity is marine.

Description

External Appearance: Colonies are irregular. Some small mushroom-shaped, flat-topped.
zooid-bearing heads are supported on upright and recumbent stalk-like outgrowths of common basal test. Some are attached to a large worm tube by a thin basal membrane (WAM 135.75). Also large areas of the basal test thicken to 0.5 cm beneath irregularly shaped flat-topped zooid-bearing lobes, 5 cm in maximum extent. These lobes slightly overlap the thickened basal test, and sometimes one another, around their periphery.

Zooids usually are in double rows radiating from 2 or 3 common cloacal openings in the centre of the flat upper surface of the smaller mushroomlike heads. In larger plate-like lobes the number of common cloacal apertures increases and they become more dispersed over the upper surface. Zooids sometimes are arranged in a circle around a cloacal aperture although as zooids are added to the system, the double rows develop and radiate out from the aperture. The test is soft and semitransparent. In preservative colonies are pastel pink and blue, both colours occurring in the one colony and sometimes in the one lobe. Some specimens from Blackwall Beach are muddy grey in preservative, owing to the mud content in the gut of the zooids. The pigment is in particles in the surface test.

Internal. Structure: The small branchial aperture is terminal and is not lobed. The atrial aperture is a wide opening with the upper border produced into a long pointed lip. About 30 fine muscle bands are on the thorax. Dorsal ones extend across the dorsal line between the atrial and branchial apertures, curving out into the atrial lip; others radiate from the branchial aperture; and the ventral ones extend from the endostyle toward the postero-dorsal corner of the thorax. Muscles are present, but are most inconspicuous on the abdomen. There are 16 and 14 long rectangular stigmata in anterior rows on left and right respectively, and 14 and 12 in the posterior rows, Fine parastigmatic vesscls are present.

The long, elliptical, vertically oriented and rigid stomach is yellow. It is smooth externally but internally it is papillated. Occasionally the papillations seem in longitudinal lines appearing as fine longitudinal striations. The oesophagus is constricted before it enters the stomach.

Gonads are in the gut loop and consist of a rosette of up to 12 testis follicles with a large central ovum and up to 2 smaller ones on the right side of the gut loop. A long brood pouch is attached by a long, narrow neck to the postero-dorsal corner of the thorax to the right of the rectum. The brood pouch, containing up to six embryos, extends toward the base of the colony without curving, although its distal tip is bent upwards.

Fic. 42, Distaplia muriella n.sp, (holotype WAM 135,75): a, colony; b, zooid; c, larva. Scales: a, 5 mm ; b, 1 mm ; c. 0.5 mm .

Developing embryos and tailed larvae are present in the holotype and paratypes from the Swan River taken in November.

Larvae are large, with a long (1.5 mm) almost cylindrical trunk and a tail only slightly longer. There is an otolith and an ocellus in the cerebral vesicle.

Reaiarks: Colonies resemble most closely those of D. ausiruliensis, with double row systems. radiating from cloacal apertures and extending down the sides of the colony. However, zooids differ, those of the present species having their gonads in the loop of the gut rather than in a posterior abdominal sac. Zooids of the tropical
species D. cuscina n.sp. are similar to those of the present species, the stomach having the same elliptical shape and vertical orientation. although in D. cuscinu the systems are more consistently circular, the number of stigmata in each row is greater, the stomach has internal ridges. and the oesophagus is not constricted before it enters the stomach.

Other known species, with a smooth stomach and gonads enclosed in the abdomen, viz. D. regina n.sp., D. florido n.sp. and D. racemosa n.sp., have circular rather than double row systems converging to terminal cloacal apertures, and their colonies are cushion-shaped rather than stalked.

The constriction at the distal end of the oesophagus just before it enters the stomach is an unique feature in D. muriella helping to distinguish it from all ot her species. The numerous (6) embryos in the brood pouch are an unusual feature of the present species which it shares with D. australiensis (which has from one to 5). Distaplia violetta n.sp. sometimes has 3 but other specics have no more than one.

Colonies of this species from the Swan River estuary in both April and November are in an active state - sexual reproduction as well as vegetative replication occurring in the same colony at these timies.

Distaplia pallida n.sp.

(Fig. 43. Plate 9e)
Distaplia viridis: Koth, 1972a. p. 7 (part, fig. 6 specinens from Hallet Cove).

Distrieltion
Typr Locality. Vietoria (Partsea, on jety pile. 4m, coll. N. Coleman 13.3.75, holotype QM GH4102; 2m, colt. G. Russ 16,3.78, paralype QM G1 1923).

Fursiner Recorns. South Australia (St Vincent Ciulf - SAM E1998 Kot1 1972a: Great Australian Bight QM Gfl 4189). Victoria (Portsea, QM G11924). Tismania (Tinderbox, QM G9994).

Description

External Appearance: The shect-like colonies are thin (not more than 0.5 cm thick) and sometimes extensive. growing around rubble. In preservative the test is gelatinous and almost transparent, and the zooids show through it as white dots. Zooids are in circular to oval systems of up to 15 zooids. Each system has a cloacal aperture at its centre or toward one end. Sometimes one end of an oval system is extended into a short, double row. The living specimens

Fig. 43, Distaphta palida n.sp.: a, artangement of pooids in system (paratype QM G11923): b. zooid (paratype QM G11923): c. larva (SAM L1998). Scales: a, 2mm: h,c. 0.5 mm .
are a pille to bright yellow and vrange (QM GH4189), or the roove are orange in a tsansparent test (SAM E1998).

Internal Struequra Rooids with a emmbracked thorad are up to 3 mm long, but usually iresmaller, Absut 20 finc Iongitudinal and oblique muscles are present on the thorax. "There are 6 small branehal lohes. The athial aperture is the usual wide asymmetrical opening. It loas at long amtertor lip with 3 or 4 pointed or sounded toothlike projections along its llat-ended outer tip, which is often oblique and asymmetrical rather fran silringht, corresponeling ta the asymmetry of the upening itself. Muscles extend from the hranchat aponture along the centre of the atrial lip. crossing the dorsal museles shat eurve art anto the lip.

On the left are 10 and 12 stigmata in the posterior and encto af the three anterior rows of stignata respeetively, and on the right the numbers are 10 in the anterior rows and 8 in the postertor row. Fach row is crossed by a parastigmatic vessel

About halfway down, the ucsophagus makes an abript, right angled hend toward the vential surlace to enter the stomach. which is shore and almost barrel-shaped and lies at right angles ta the longitudinal axis of the ronod. The stomach has ubout 12 deep. roundell lolds at its cardiae end. These fade out it the pyloric end. where the stomach narrows. The duralenal region ol the gut turns posteriorly. at right angles to the long axis of the stomath. The mid-intestine ocerpies the distal part of the deseending limh al the gut loup betore natruwing slightly to open intu the rectum wherc, in some specimens with an emply gut. a rectal valve can be seen. Thus the gut loop frames an almosi reetangular area in the lower hall ol the abdonmen. Gonads are in the gut loop and consist ol a cirele ol malc fullieles and a single cgg.

Gionads are mature in specimens collected from South Australis in December (SAM E1998). but not in any of the colonies colleeted in March or April 'There are vegelative huds in the leat amongst the adult zooids. but no gonads were ohserved in these small vegetative individuals.

One tailed larva is present in each brood pouch ifl colanies cullected from St Vincent Gulf in December ($\$ A M$ Fl998). The trunk 1.s almons spherical. 1.35 mm long with a short tail cxtending only about ane-third of the way atround the ciacumferenes of the trunk. The ? triradially urranged, almost sessile athesive organs are on a frontal plate. Four rows of stigmata are present. logether with ocellus, atolith and a well developed gut loop.

REmarks. In prescrontive, these insesting colonis: can be mustaked for the sympatie D. viridis or D. bokioske n.sp. Desraplia pallida is distinguished from D. viridis by its smaller zooids with lewer stigmata. larger and more variable systems, the rigla-ingled bend in the nesophagus. deeply folded stomach. more transparent and less spongy test, and pigmentation al the living eolony. Distapled tokioko nsp. hos simitar colonies but its gonads are in a pusterior abdomen.

The yooids ol' D. dubia (Oks, 1927c) Irum dupan and Lord Howe l. (see above, D. duhia) moss closely resemble those ol the present species, but they bave more numerots stomach lolds, more stigmata and lorm more regularly circular systems.

Eistaplia ceaseina n.sp. has more sligmata than the present species, does nut form such extensive sheet-like colonies, ind has simple, eircular choueal systems and a vertically oriented stomach with conspieuous internal ridges.

Dishaplia pallida resembles II!psisfozoa dishomobles and the New Zcaland H. fasmeriana boll species having deep rounded stomath lolds. a horizontally oriented stomach. and similar numbers of sligmalds. However, lıיpsivo $=0 a$ spp. have stalked or upright colonies, never shect-like ones like those of D, pallido, and they have conspicuous longitudinal muscles on the posterior ahdominal vaseular appendix. as well as gonatis posterior to the gut loop.

Distaplia prolifera n.sp.
 (Fig. 44: b)

Diviklitulim

 NW Fron Hedland, $2 y^{\mu} 128118255^{\circ} \mathrm{L}, 14 \mathrm{~m}$, coll, L . Marsh on RV' Surfa 5.8.82. hulotype WAM 812.83 Q.M (H こ/(13).

Dleserifolus
EvilkNat Arimakancy The single availahbe colony is large and irregular, completely investing a large branching algal stalk. Its maximum dimension is 15 cm and its maximum thickness is lem. The test is tough and spongy. In preservative it is pank, owing to pink pigment partieles embedded in the surface test. Zooids are in circular to oval systems, and in the preserved culonen the surface test is slightly depressed over the systems.
 about 4 mm long, even with the thorax enntracted They have a long vesuphagead neck that is more than hall the length of the ahdomen. Gonad. are in a sac posterior to the abdomen. attached to the righl side of the gut loop by i narrow neek About 34 fine longitudinal muscles are on the

Fic. 44. Distaplia prolifera n.sp. (holotype WAM 812.83): a, rooid; b, larva. Distaplia racemosa n.sp. (holotype NTM E9): c, zooid: d, larva. Distaplia regina n.sp. (holotype QM GH4201): e, zooid. Scales: a-c. 0.5 mm .
thorax. including those that cross the dorsal midline hetween the apertures and continue around the atrial aperture. The branchial aperture is 6 lohed. Sometimes the atrial aperture is wide open exposing the dorsal part of the branchial sac, but sometimes it is produced out on the end of a siphon. There is only a short pointed lip from
the upper border of the atrial opening. On the left 18 stigmata are in each of the 3 anterior rows and 16 in the posterior row. On the right 16 stigmata are in the anterior 3 rows and 14 in the posterior row. A parastigmatic vessel crosses each row of stigmata.

The stomach is in the posterior third of the
abdomen. The distal end of the oesophagus turns slightly toward the ventral surface before entering the stomach and the oval stomach is itself slightly obliquely oriented. The stomach is not folded, although its internal wall has about 20 fine longitudinal striations in its glandular lining. The mid-intestinc opens into the rectum in the pole of the gut loop and there is a distinct rectal valve. A long elliptical gastric reservoir lies in the gut loop.

Four long testis follicles are in the posterior abdomen. They are longitudinally oriented, opening into the vas deferens at their posterior ends. A small ovum is also present at the posterior end of the abdomen near the proximal end of the vas deferens. In this holotype colony, collected in August, there is a single well-developed embryo in each brood pouch. The brood pouches are present in the test behind the zooids, attached to the thorax by a long narrow neck, often hard to distinguish in the rather tough test.

Larvae are large, the oval trunk being 2.2 mm long. The tail is relatively short, reaching only to the anterior end of the trunk. There is an otolith and an ocellus in the cerebral vesicle. The large adhesive organs occupy the anterior third of the trunk. Each adhesive organ has a single large balloon-like expansion at the base of its stalk. There are two small buds from the oesophageal region of the oozooid.

Remarks: Although Distaplia pallidan.sp. also has an investing colony and zooids arranged in circular to oval systems, it is distinguished from the prosent species by the absence of a posterior abdominal sac - its gonads being enclosed in the gut loop. Distaplia rokioka n.sp. has investing colonies and gonads in a posterior abdominal sac like those of the present species but its stomach wall is foldcd. Other specics with their gonads in a posterior abdominal sac form stalked colonies that are readily distinguished from the present investing species. Further, both zooids and larvae of D. violetta n.sp. and D. stylifera are smaller than those of D. prolifera n.sp.

Distaplia racemosa n.sp.
(Fig. 44c,d)
Distribution
Type locality: Northern Territory (Arafura Sea, Cootamundra Shoals, $10^{\circ} 49^{\prime} 49.966^{\prime} \mathrm{S}$ 129 ${ }^{\circ}$ I $2^{\prime} 54.876^{\prime} \mathrm{E}$, 36 m , coll. R. Lockyer 6.5 .82 , holotype NTM E9 $Q M$ GH4360).

Furtier Records: None.

Descripiton

External. Appearance: The colony is investing, growing around a narrow woody stem. It is
long. The edges have partially joined together along one side so it appears to be a cylinder of about 2 cm diameter. Thus the species will probably be found as a flat, investing sheet when taken from other substrates. Therc are regular circular systems of about 6 zooids. The systems are evenly spaced, the cloacal apertures being about 1 cm apart. In the preserved specimen the surface of the colony is depressed over each system.

The colony is firm, owing to the thick $(0.5 \mathrm{~cm})$ gelatinous and translucent but firm outer layer of test at thoracic level. The inner test around and posterior to the abdomen is soft, spongy and almost opaque, containing the posterior abdominal stolons and developing vegetative zooids. The outer translucent layer of test is palc pink in preservative. The soft inner layer is white.

Internal Structure: Zooids are about 6 mm long. The body wall has conspicuous fine horizontal muscle bands crossing the sides of the body from the endostyle. Short longitudinal bands radiate from the branchial aperture over the anterior end of the thorax to the level of the second row of stigmata. The branchial siphon is short and its border is divided into 6 shallow lobes. The large anterior atrial lip has 3 fine projecting tongues along its terminal edge. This lip is inserted into the test around the cloacal apcrture. There are 4 rows of long stigmata, 26 in the anterior 3 rows and 24 in the posterior row. Each row is crossed by a fine parastigmatic vessel. The oesophagus is long and narrow. The relatively short, smooth-walled and slightly obliquely oriented stomach is about halfway down the abdomen. There is a small oval posterior stomach. The gut loop encloses a spherical mass of short, only slightly pyriform testis follicles. A single ovum is present on the right sidc of the testis at the base of the vas deferens.

Embryos and tailed larvae are present in the test at oesophageal level, the stalk of the brood pouch being relatively short. Only a single embryo develops in each brood pouch. Larvae have a trunk 1.8 mm long and a relatively short tail reaching about halfway around the trunk. They have an ocellus and a small otolith. The triradially arranged adhesive organs have short stalks that are not expanded at their base.

Remarks: Only the holotype colony is available. Its size and its well-separated and evenly distributed circular systems are distinctive, as is the outer firm gelatinous layer of test that is of entirely different consistency from the basal test. The zooids with their predominantly transverse musculature most closely resemble those of the Japanese D. systematica Tokioka, 1958 (described

Irom a single colony) and the possibly conspecific specimen lrom Toesl (specimen 2.iii.1922) fissigned to I). stofifera by Millar (1975). Iokioka's (1958) specimen had no gonads. The bestis in the enony from Toual is unt the same spherical mass of crowded male follicles as that lound in the present speeics. Further, both Japanese and Toeal material consist of separate stalked lobes, arising from a common hase, each lobe containing a single circular system. Alhough it is possible these colonics are juvenilcs, and catch lube could develop 10 accommodate numerous circular systems (as in the present species). the growth pattern. in which inditional lobes are added to the colony, appears different from the siset-likc L. racemosa.

The circular systems and the zoovids ol the present species resemhle those of D. viridis. although the longitudinal thoracic museles are more conspicuous in the latter speeics: and it has more stigmata.

The relatively numerous branchial stigmata and the sheet-like lorm of the colony are eharacters harcd with the temperate spoeics D. Jlorida which, however, has more erowded circular systens and larvac with numerous ectodermal ampultae at the anterior end of the trunk. The relativcly large latige of the present species, Without expansions at the base ol the adhesive organs, are characteristic.

Distaplia regina n.sp.
 (Fig 44e)

Tyin: Facaldiy Qucenstand (Heron 1, Capriconn ¿irous, litw tide, under side of rubble. coll. I'. Koll 25.5.87. holotype QM GH4201, paratype QM (illd202).

Fubrurb Regens: Nume.

Describloon

Pixtrrnal Alrutakanct: Colonies are soft and arregulat cushions 2 to ? cm in maximum diameter and less than Smm thick. Zouids are arranged in eircular systems around sessile cloacal apertures. Living colonies are dark purple with clouds of white particles in the surlace test. 'These ate concentrated over the atrial lips to lorm a white patch in the eentre of each systent in the vicinity of the cloacal aperture. Immediately on fixation with formalin the colout of the colony changes to, and remains. eloudy pink. Dark red-brown pigment cells were in the test after a period in preservative. The test has the spongy consistency of so many species of this genus

Intrrnal Structira Zouids are about 3 mm long when contracted. They are almost opsyuc in preservative, with a greenish tramslueent slomach and proximal part (descending limb) of
the innestine. Ihere are o pointed branchial lubes. 'The utral opening is large with if ong umprior lip and 3 tongues on its nutier lip. About is longitudinal horacic museles extend lrom the branchial sighon. Other fine muscles wroxathe mud. line dorsal to the branchial siphon, some curving out into the atrial lip and then continuing down each side of the atrial aperture. No oblique or transvesse muscles uriginating from the ventral mid-line suere ohserved in the se rooids

The stigmata are moderately long and rectangular, but no parsstigmatic vessels were detected in these specimens. On the right side of the branchial sase ase 20 stigmata in cach of the 3 amerior sows and 18 in the postcrior row: and on the left 18 m each of the antetion rows and 16 in the pusterior ruw.

The abdomen is relatively large, the gut being especially voluminous. The large stumach is about hallivay down the abdomen, more or less vertucalls oriented in the vertical gut loop. It is splerical or slightly ohlong, Externatly its wall is smonth but internally the glandular epithelium is raised in short ridges or papillae to lorm a retieular pattern when seen from the outside. The shor ridges are oblupuc or iransverse, seldom longitudinal. A short duodenal aren narrows belore it enters the rectum, where there is a disthet recest valve. The gut loop encloses a eirele of about $\$$ club- to wedge-slisped testis follictes. These juin the vas dclerens in the centre of the circle. A single cgeg is sumetimes present near the proxintal end of the vas deferens, If projects slightly from the side of the abdomen. There is a rudimentary brood pouch altithed by a narrow neck to the posterodotsal corner of the thoras just to the right of the mid-line. No embryus were being brooded in either the holotype or paratype colony.

Romarks Although the soft cushon-like colony. the systems, and the mumers of stigmatio present in this species resemble those of D. cuscina n.sp. zooids are larger and the gut, especially the almust spherical, roomy stomach with its unique internal pattern and greenish translueent colour. are distinctive Listaplia ié=oenses Tobinkir. 1951a, from Japan, lias both colony and rooids (including the reticular pattern in the imernal stomach lining) that resemble those of the present speeies. The Japanese species has fewer stigmats (12 to 1.3) and ii has conspicuous prarastemasic vesxels. It appears to be a separate species.

Distaplia relinaculata n.sp.

(Fig. 45)
Trut Lseanth: Vichera (1 5k min MeGmamix

R7F;R 1977. holotype MV F53267 QM GH\$19\%; R.3F 44 paratype MV F53268).

Description

Exterval Appearance, Colonies are soft, fleshy, cylindrical and rope-like, up to 1 cm in diameter. In all recorded specimens much of the surface of the colony appears to be disintegrating, and systems are disrupted. However, there are entire areas where zooids are in crowded circular systems of about 12 around large common eloacal apertures up to 2 mm in diameter. Some dark grey pigment particles are present in the surface test of the preserved colonies. The soft eentre of the cylindrical colony is filled with a tangle of fine vascular processes.

Intrinai Stricthre: Zooids are about 4 mm long. The branchial aperture is 6 -lobed. The atrial aperture is wide with a pronounced lip from its upper border. The free terminal border of the atrial lip is divided into 3 or 4 small tongues. Longitudinal and oblique muscles are on the thorax, and fine fibres extend along each side of the abdomen. The branchial sac has 20 stigmata in the anterior rows and 18 in the posterior row. A fine parastigmatic vensel extends across each row ol stigmata.

The oesophageal neek is rather long, being more than hall the length of the abdomen. There is wo posterior abdominal sac. The vertical, oval stomach, in the anterior half of the posterior third of the abdomen, is smooth externally. Internally it has numerous fine and mostly longitudinal striations in its glandular wall. A short, broad midintestine posterior to the stomach opens into the wider rectum. The proximal part of the reetum eurves around to form the pole of the gut loup. Gonads, consisting of a circular to hemispberical mass of about 10 pear-shaped male lollicles and a large ovum are present just to the right of the posterior end of the gut loop. The vas deferens makes a loop over the surface of the ovum. Gonads are present in the vegetatively produced rooids, which are present in the test between the adult zooids. In these vegetative zooids the ovum protrudes from the side of the abdomen and is connected to it by a narrow stalk, Large yellowish embryos(?) lie free in the test in the centre of the colony. They do not appear to bc in a brood pouch and probably rupture from the abdomen into the test, presumably after lertilisation.

In most ol the zooids there are two vascular processes from the left side of the gut loop.

Remark; This species most closely resemble Distaplia (ylindrica (Lesson) from the Antarctic (sec Kott 1969) which also often is found in a
similar disintegrated condition. The Antaretic species has more numerous stigmata in the branchial sac and distinct ridges in the stomach wall. Although it has not been reported for the present specics, it is possible that the long cylindrieal zooid-bearing heads break away from the substrate and float near the surface of the sea as the Antarctic species is known to do (Kott 1969).

Although their colonies are distinctive, the zooids of the present species most resemble those of D. viridis which also have a smooth stomach. the same numbers of stigmata, similar circular systems and in ovum projecting in a sack lrom the side of the gut loop in small vegetatively produced zooids.

The brooding of the embryos in the test, and then release directly from the abdomen is a phenomenon associated with large eggs. It always occurs in the Didemnidae and in the genera Hypodisoma and Polydistoma n.gen. It is not known to oecur in any other species of Distaplia. The larva is not known for this species.

Fro. 45. Distandia retinaculata n.sp. (holotype MV F53267): 2. 7ooid; b, ahdomen of vegetative pooid with precocious gonads. Scales: a. 1 mm ; b. 0.25 nom.

Distaplia stylifera (Kowalevsky, 1874)
(Fig. 46. Plate 9f,g)
Didemnium stylifera Kowalewsky, 1874, p. 443.
Distaplia stylifera: Michaelsen, 1930. p. 502. Brewin. 1953, p. 60. Kott, 1957a, p. 95; 1972b, p. 170. Millar. 1963a, p. 713:? 1975, p. 224 (part, ZMC, 19, iv. 1922 from Toeal), ? Monniot, 1988, p. 197.
Distapha magnilarva: Seeliger, 1907, p. 1018.
Distaplia mikropnoa: Hartmeyer, 1919, p. 130. Tokioka, 1955a, p. 51; 1967a, p. 130.

Distribution
Nrw Ricorbs Western Australia (Houtman"s Abrolhos. WAM 808.83: Shark Bay, WAM 809 11.83; Triggs 1., WAM 33.7214 5.84: Cockburn Sound, WAM 40.7269 .75140 .75142 .75 207.75 22.84). South Australia (Great Australian Bight, QM GH943 GH970 GH2292 GH2302 GH2407). Qucensland (Hervey Bay, QM GH4I29; Wistari Reef, QM GH4I32; Heron I., QM GH4203).

Priviousiy Rfcoridtid: Western Australia (Broome, Roebuck Bay Millar 1963a, Cape laubert Hartmeyer 1919; Shark Bay Michaelsen 1930; Cockburn Sound Brewin 1953, AM Y1180 Y1185 Kott 1957a, Millar 196.3a). South Australia (Great Australia Bight SAM E1997 Kott 1972b). Palau Is (Tokioka 1955b, 1967a), ? Philippines (Millar 1975). Red Sea (Kowalevsky 1874).
It is surprising that with such a wide range the species has been recorded only twice from the eastern coast of Australia, and not at all from the western Pacific Ocean. The Quecnsland records are of a specimen cast up after a stifl northerly gale (fide G. McKoen. QM GH4129) and two orange-vermilion (Ridgeway 1886) colonies from the Capricorn Group (QM GH4!32 GH4203).

Description

Externat Appearance: Colonies are mushroom- or toadstool-shaped, the zooid bearing head being rounded to conical and the stalk short and fleshy. Sometimes a numher (up to 6) of heads branch off the top of a common stalk or they arise from a common basal mass of test. The stalk is often cylindrical and the base of the zooid-bearing head may overlap it. In other colonics the stalk expands at the top and its junction with the head is not sharply defined. The zooids are arranged in circular, oval and long radiating double row systems all over the head. The common cloacal apertures have 5 or 6 lobes. The test is firm and of a spongy consistency.

Living colonies are pink-red, orange vermilion (Ridgeway 1886) or beige with golden zooids. The colony cast up on the Queensland coast is reported to have been a rich orange. In preservative all colonies are the same beige colour, although sometimes a trace of red pigment is present in parts of the zooids.

Iniernal Structurt Zooids are about 3 mm long, excluding the posterior ahdominal sac that contains the gonads. The branchial apertures are 6-lobed. The atrial apertures are wide with an anterior lip that is pointed or flattened with 2 to 5 small teeth projecting from its terminal horder. There are ahout 30 longitudinal and ohlique thoracic muscles. and more variation in the number of stigmata in each row than is usual in this genus. In specimens from Western Australia. South Australia and Qucensland, respectively, the maximum number (in the left anterior rows) is 18,16 and 14. There are, as usual, 2 stigmata less in the posterior rows than in the anterior rows; and 2 more in rows on the left than in corresponding rows on the right. Parastigmatic vessels were not detected in any of the specimens except the one from Hervey Bay (QM GH4129).

The oesophagus bends ventrally to enter the shield-shaped stomach which has a long curved ventral border and a much shorter dorsal horder, The stomach has 16 to 20 distinct curved, longitudinal folds, some of which branch. A large oval gastric reservoir lies in the gut loop. The midintestine is separated from the rectum by a distinct rectal valve.

Gonads are present in a small sac behind the ahdomen, although it does not always have a particulary narrow neck separating it from the abdomen. The testis consists of a grape-like cluster of up to 15 pear-shaped follicles. Often a large ovum lies alongside the testis. The vas deferens extends over the surface of the ovum in a convoluted course. In one Queensland specimen (QM GH4203) there are only 6 wedge shaped male follicles crowded together in a circle. In this specimen the posterior abdomen is connected to the left side of the abdomen by only a short neck. This specimen and some from north western Australia (WAM 977 8.83) have the triangular hody that was descrihed hy Tokioka (1967a) alongside the ascending limb of the gut loop. It is yellowish and translucent. It does not appear to be part of the gastric gland, as Tokioka suggested.

A single embryo is in the relatively short-necked brood pouch in specimens collected from Western Australia in January (WAM 22.84), April (WAM 809.83) and December (WAM 140.75). However. other specimens collected in those and other months from hoth Western Australia and South Australia do not have embryos.

Larvae have an almost spherical trunk, 1.2 mm long and only slightly longer than deep. The whole stalk of each adhesive organ appears expanded

Fig. 46, Distaplia stylifera: a-c, colonies (QM GH2407, WAM 810.83 808.83); d,e, zooids (WAM 808.83, QM GH2292); f, larva (WAM 810.83). Scales: a, 5 mm ; b,c, $1 \mathrm{~cm} ; \mathbf{d - f}, 0.5 \mathrm{~mm}$.
into a balloon-shape. There is an ocellus und an otolith in the cerebral vesicle.

Remarks: Michaelsen (1930) believed that D). bursara (Van Name, 1921) from the West Indies was a synonym of D. stylifera from the Red Sea and north-western Australia, and other authors have followed him in this. Although the colonies and even the pigmentation as well as some characteristics of the zooids including the numbers of stigmata are identical, the West Indian species has a narrow-necked posterior-abdominal sac containing only 6 long testis follicles that more closely resemble those of D. aussraliensisis than the usually numerous, shorter follieles of the present species.

Some of the specimens from the Philippines (ZMC 19.iv.1922) with stalked colonics. circular systems and burtehed testis follices that were referred to D. stylifera by Millar (1975) probably do belong to this species, although other specimens have the parastigmatic vessels, several embryos in the brood pouch and the longer larval trunk of D. violetta n.sp. Specimens from New Caledonia assigned to D. stylifera by Moniot (1988) may also belong to D, violerla $\mathrm{n} . \mathrm{sp}$. They have parastigmatic vessels, few male follicles, circular systems and are grey-green (in preservative?).

Tokioka (1955b, 1967a) used the absence of parastigmatic vessels to distinguish D. mikropnoa (Shuiter, 1909) from D. stylifera. However, parastigmatic vessels were not recorded in the type of D. stylifera from the Red Sea and as the species has not been taken since from that location it is not possible to confirm their absence. Parastigmatic vessels are not present in specimens assigned to both D. stylifera and D. mikropnoa from Western Australia, Indonesia and the Palau Is (see Sluiter 1909. Hartmeyer 1919. Michaelsen 1930 and Tokioka 1955b, 1967a). In kpecimens assigned to both species (sec synonymy, above) the male follicles usually are numerous, short, pear-shaped and bunched toget ber, although in some specimens (like those described by Michaelsen 1930) there are as few as 6 relatively large wedge-shaped follicles crowded together in a ring (sec also QM GH4203). Thus, neither the presence nor absence of parastigmatic vessels nor the number of male follicles afford a means of distinguishing between D. mikropnoa and D. siylifera.

In fact, must of the specimens assigned to D. mikropnoa appear to be conspecific with D. stylifera, Distaplia mikropnoa (> Polyclinum mikropnous Sluiter, 1909) appears a distinct species separated from D. stylifera by its colony form, long oval stomach oriented in the longiudinal axis of the body, and branching network
of stomach folds. The type specimen is a large sponge-like mass 4 cm wide. ocm long and up to 8 mm thick different from the stalked upright colonies that characterise D, stylifera.

Some of the larger colonies resemble those of Hypsistozoa dixtomoides which also has a thick. fleshy stalk. In the absence of the characteristically located gonads, $I l$. dixromoides can be distinguished by the conspicuous muscles on its vascular process and its less numerous stomach folds. The convoluted course of the proximal part of the vas deferens in the present specimens is similar to that in Q3. retimaculata n.sp.

Distaplia tokioka n.sp.

(Fig. 47a,b)
Distremifion
Typt Lexalne Sounh Australia (Great Australian Bight. Price I.. Avoid Bay, 1520 m , coll, N. Holmes 9.4.87, holotype SAM F2081, paratypes (iH4179),

Description

Eximrnal Applarancy The lype material consists of numerous sessile, irregularly shaped cushiun-like colonies, up to 5 mm thick and 6 cm in maximum dimension, investing weed stalks and fronds. Zooids are arranged in circular systerns. Common cloacal apertures. about 5 mm apan. protrude from the surface as rounded prominences. Their borders entire, and not divided into lobes. The test is firm, with the usual spongy consistency of most species of this genus.

Infernat Strueture Contracted rooids are about 2 mm long excluding the posterior abdominal sac which is connected to the abdomen by a short bui narrow neck, There are f well delitiod triangular branchial lobes. The atrial aperture has the usual large anterior lip with 2 or 3 pointed terminal processes. Thoracic muscles are conspicuous, and appear all longitudinal, about 20 extending from around the branchial siphon, and additional bands curving out into the atrial lip and down along each sade of the aperture. The branchial sphincter is well developed,

On the fight are 16 stigmata in the anterior 3 rows and 14 in the posterior row, and on the teft 14 and 12 respectively. Parastigmatic vessels are present. The oesophagus bends ventrally to enter the alnost horizontal and rather long stomach. which has about 12 longitudinal folds in its wall A conspicuous spherical gastric reservoir lies in the rather wide gut loop.

Gonads are not mature in these specimens However, some zooids have small, tear-dropshaped posteriur abdomina, attached by a relatively long narrow neck, to the right side of
the abdomen. They contain small, pear-shaped testis, follieles.

R1 marks: Externally, this speeies resemhles D. viriclis and Distaplia pallida n.sp. Although the individual colonies are not as extensive, their shape may be affeeted by the substrate, in this case weed lronds and stalks. Further, the geographic range of both 1). viridis and D. pallida ineludes the type locality of the present speeies. However, although D. pallita has a similar number ol gastrie folds, it is readily distinguished by the presence ol the gonads in the abdomen rather than in a posterior ahdominal sat. Disfaplia viridis has similar circular systems and conspicuous protruding cloacal apertures, but also has gonads in the abdomen rather than in a posterior abdominal sae, and it has more stigmata and lacks stomach folds.

Amongst the species that do have a posterior ahdominal sac, the tropical Distaplia violettan.sp. resembles the present species in its cireular systems and number of stomach folds. However, it has thicker eolonics. conspicuously lohed eloacal apertures and more numerous stigmata.

Dissaplia striffera, with similar short male follicles bunched in the posterior abdomen, and olten simple eireular systems as in the present speeies, has more numerous stigmata and stomach lolds, and lacks parastignatic vessels. Further although there are many paratype colonies ol the present new species, not one of them has the stalk that usually is characteristic of D. whlifera. Distaplia prolifera has a smooth stomach with longitudinal striations internally and only 4 long malc lollicles.

Distaplia violetta n.sp. (Fig. 47c-e)
? Distuplia sylfifera: Millar, 1975. p. 224 (part, specimens. ZMC 17 22.iii. 1914). Monniot. 1988. p. 197.
Dsaributhon
Thil Locwirn Queensland (Capricorn Group. Wistari Reef. low lide rubble fana, coll. P.K. 5.X.82. holotype QM GHI 358: Heron I coll. P.K. May 1985. paratypes QM GH4130, May 1987, QM (GH204).

Furamer Ricorbs Queensland (Capricorn Group. QM (iH4131 (iH413. GH4135 7 GH4205 9 GH4439. Townsville, QM (iH4138). ? Philippines (Millar 1975). ? New Caledonia (Monniot 1988).

Descripiton

Fetirval Abmaranc. Colonics are small. sessile flat-topped platforms about 1 cm high, with thick basal test, and with the wide, flat, upper surlace narrowing loward the base and sometimes forming a short fleshy stalk. Zooids are in circular systems around conspicuous projecting cloacal
apertures with 5 -lobed rims. Fach system is about 4 mm in diameter. Zooids are always vertical and parallel to one another, opening only on the top and never on the sides ol a eolony. The test has a spongy consistency.

The colour of the living colonies results from mixtures of dark 'pansy purplc’ (Ridgeway 1886) pigment cells with clouds of opaque white particles in the surface test. Sometimes some yellow or brown pigment is also in the centre of the cloacal systems. Thus resulting colour's vary, being fleshcoloured, bluc, mauve with pink, plum coloured test with pink rooids. In preservative, colonies are green, with indigo blue pigment cells in the surface test and green in the remainder of the test.

Initrnat Saructure: Zooids are less than 3 mm long, excluding the postcrior abdominal sac which is joined to the right side ol the posterior end ol the abdomen by a fairly long, narrow neek. The thorax is longer than the abdomen. The branchial lobes are large and triangular, those on the ventral part of the opening projeeting in front of the dorsal ones. The atrial aperture is the usual wide opening, although it is sometimes produced forwards into a funnel-shaped siphon protecting the branchial sae from direet exposure to the cloacal cavity. A pointed lip is produced from the anterior rim of the atrial aperture. There are about 20 fine longitudinal muscle bands on the thorax some extending across the dorsal mid-line between the apertures and curving out into the atrial lip. On the left are 20 stigmata in each of the anterior 3 rows and 18 in the posterior row: on the right. are 18 and 16 respectively. Parastigmatie vessels are present.

The oesophagus bends ventrally to enter the eurved stomaeh about halfway down the abdomen. The stomaeh has 8 to 12 folds that flatten out loward the pyloric end, where the diameter of the stomath decreases. These are true stomach folds rather than internal ridges, as the whole stomach wall is folded. There is a short, narrow mid-intestine and a distinet reetal valve where the intestine opens into the rectum in the pole of the gut loop.

A tight group of 4 to 6 iclatively short, wedgeshaped male follicles is in the posterior abdominal sae. Three small ova are often at the outer end of the male follicles where they join the vas deferens. A single, well-formed emhryo is present in the long-necked brood pouches of some of the speeimens collected in May (QM GH4208). August (QM GHI358 GH4439) and November (QM GH4137) from the Caprieorn Group. In one colony up to 2 large eggs were in each brood pouch, as well as a well advanced larva. No embryos were

Fig. 47. Distaplia tokiaka n.sp. (paratype QM GH4179): a, eolony: b. 7ooid. Distaplia vioketta n.sp. (holotype QM GH1358): c, colony; d, 700 did: e. larva, Scales; $4,5 \mathrm{~mm}$; b,e, 0.5 mm ; c, 4 mm ; d, 0.5 mm .
present in January or June. The length of neck of the brood pouch is variable. Sometimes brood pouches are neat the base al the colony, suspended from the posterior part of the thorax by long. narrow necks.

The larsal trunk is 1.6 m m long, and the tail 1s. relatively short, reaching halfway around the trunk. There is a well-formed ocellus and otolith. The base of the staik of each of the 3 adhesive organs is expanded but ampuliae are not developed. The hyaline coap on the axial cone is large. conspicunus and appears detached. Two blastopooids lie in the frothy looking larval test.

Remarks. This species is readily confused with D. silifera. Disfaplia violerfa can be distinguished by its less conspicuous and less numerous stomach folds, longer larval trunk, occasionally more than one embryo in the long-necked brood pouch, and lite plum colour of its living colonits and their dark and subsequently greenish colour in preselvative. The testis follicles of D. striforo are usually (but not always) smaller and more numerous. The specimens with parastigmatic vessels and several long embryos in the brood pouch assigned to D.

Living colonies resemble those of D. cuscina n.sp, but have more conspicuous cloacal apertures. and rovids are readily distinguished by the posterion ahdomen of D. wiofeth.

Zuoids resemble those of D. whioha n.sp. from South Australia, although the uprigit, Ilat-topped colonies of the present species are distinctive and its pooids have liewer and larger male follicies and more stigmata.

Distaplia viridis Kun. 1957
(Fig. 48, Plate 10ac)
Destapliz viridie Kot, 1957a. p. 98; 1472a, p. 7 (part. specimens Irom Porr Nowarlunga. tig. 7). Millar. 1966a, p. 365

Not Distupha wirdts: Koth 1972a, p. 7 (part, lig. 6 specimens from Hallett Cove< Distaplio pallida n.ap. $)$

Destamation
Nin Resumb Serth Australia (Great Nustralian Bight. SAM E 2040 . QM GH\&146 GH\$159: Sponetr Gulf. QM (iH4216). Victoria (Porthad. O.M (iH45). Queensland (tteron 1, QM GH43S5).

Proviousi y Racorbis: South Australia (Spencer Gult Y2069 Kot 1957a; St Vincent Gull AMY1182 Y 2070 Koft 1957a. SAM D239 Koll 1972at. Victoria (Port Phillip Bay - Millar 1906a).

The species appeats indigenous most often faken from the coastal areat between Sneneer Gutr and Pors Philtip Bay Joun 108 m . It is presumed the single record from Herom 1. represents the nothern limit of its range.

Description

Extrrnal Arprarance. Colonies are that cushions up to 1 cm in thickness with the rooids opening only on the flat lop of the colony. Zooids are arranged in circular systems of up to 10 around a central eonspicuous and protruding cloacal aperture. In preserved material the surface test is slightly depressed over these systems. which are about 4 mm is diameter. Living specimens have been deseribed as brown and white, blue-black whith white markings, whitish with purple pigment around systems, and blue-grey reticulate patern. the latter created by darker pigment around the circular systems. in preservative colonies are usually cream with a greenish tinge, although some dark bluish pigment granules are sumetimes in the relatively thin test over the systems. The colony from Heron 1 is greenish blue over the systems and dark blue between them, although the colour

Fss, 48, Dissuphio viridix: a, adult rooid (QN GH45); b. vegetative rooid wilh precocious gonads 1 QM (iH45). c. isTya (AM Yli82). Scales: a-c, 0.5ım.
recurded lor the living specimen was "hlack with White markings' - diflerent from ather species roccurring at this location, and the same as the Soutl Australian specimens.

Ivitran SIRIGTIRI Lounds are not more than 2 mm long. the thoras and the abdomen of cqual length. A vascular appendage extendes Irom the posterior end of the ahdomen, but there is 110 posterion abdominal sats. The teminal branchial aperiure has only small bobes. The upper border of the atrial aperture is produced into a long lip, usually with 2 or 3 sinall projections at the tip. About 40 fine longitudinal museles on the thorax extend across the mid-line hetween the apertures. The most dorsal museles curve out into the long attial lip, others sadiate from the branchial aperture, and the most ventral muscles (about half of the tutal number) extend obliquely across from the endostyle to the posterior end of the thorax. Muscles are inconspicuous on the abdomen.

The right side of the hranchial sane has is stigmata in each of the 3 anterion rows and 16 in the pusterior rosw, on the lelt 20 and 18 respectively. Parastigmatic vessels are present. The aesophagus is long and narrom. the orange stumach in the posterior therd of the ahdoment is vertically oriented and slightly kidncy-shaped. It has fine reticulations on the surfacc but no ridges ur folds. There are no other apparent subdivisions of the gut. A long oval gastric reservoir is in the gut loop, sbout halfway along the gantro-intestinal duct that comnects the proximal part of the intestine with the middle of the stomach. Gonads are in the gut loop. The species is protanslous. Even small, non-functional, vegetatively produced sooids have large maturinge testis fullicles on the right side of the gut Ioop. These snatl vegetatively produced sooidsalso have a small ovum projecting from the body wall in the middle of the testis. The testis consist of a circle or hemisphere ol pear-to cluh-struped follictes converging to the proximal end of the vas deferens in the centre of the cirele.

Colonies collected from Spencer Gull (Kunt 1057a) in December have a single large embryn in the hrood pouch attached to the postero-dorsal corner of the thorax by a narrow neck. Cotones collected in July fram Porland (QM GH45) contain vegetatively produced moids with maturing testes in both juvenile replicates and idult mooids Mature eggs and embryos are present in colonics collected from St Vincent Gulf in November (AM V1182 Koll 1957a).

Larvae ure Large, with a long cylindtical ronk 1.5 mm in length and a relatively shmutal ahoul
the same length. In matum larvace sall matively narrow stalk of the frimadially arranged adhesise trgans has al leass 2 swullen, halloon lake ampultae at its base. Luch epidermal concabity. With its coune of adhesive cells in the centre, is rather wade and shallow.

Rtmarks The sheet-like colonies of Dmaplat prallicer n.xp. cean be cornfused with thesse of the present species. However D. viridis has thicker cotonies. smaller more consintently circulan systems of ponids. more numerons hranchal stigmata. and a straight, vertical (rather than bem) gut boon. Jurther, the somach of D. pallista is short and folded while that of the present apecies lacks folds. In fact, the species that pesembles the present one more closcly is D. retinteculutu which. although its colony in comptetely diflerem, has a similar number of stigmaten, circulatr systons. and the stomach wall smooth externally and with reticubatious internally. Distuplias forridea nesp. is distinguished from 12 viridis by its cushion-like colony, its paler pigmentation. its very much largel larva with a more elaborate adhesive apparatio. and its more numerous stigmata. Disoplion rewo mo n.sp. also resombles the present species hating carcular systems, at similar number ol stigmatab. similar gonads and similar small rooids with longitudtnal and ubligue muscles. The intertat ridges in the stomach and more numerous musele bands distinguish it lrom the present epecers.
(ienus Hypsistoma Hrewim, 1956h
'Iype specice: Distaplia fasmeriana Michaclesen. 1924

Ithe penus combains speceics bloscly related morphologisally Io these al Bisfoplias. Colnome have a zocid-bearing head on a short, fleshy stalk. Zuobds are arranged in cloricial sysitms. flow branchial apertures are tolohed. The atrai apertutes ate wide exposing nuth of the hranchiad sac to the clacal cavitiex, and they lave a larace anteriur lip. There are 4 rous of long. rectangular sugmata, each row crossed by af fine parastigumatic vessel The abdomen is short, and there is is large gasti ic reservoil in the loop of the gut. and a rectal valve at the proximal end of the rectum. Gonads are posterior to the gut loop in the top of the conspicuess vascular stolon. tine jongitudinal moscle dibres extend onto and along the vascular stalun One ur 2 cmbryos develop in in brond poush commected to the dorsal burder of the thorad just behind the atital aperturs near the terminal part of the rectum. In hoth t/sphimbara fasmeriana and H. destomonder the vas deferens curses perterbory belouceatending anteriorly tothe atrial
cavity, as in some species of Distaplia (D. retinaculata, D. strlifera). Brewin (1959) has described the prolific larval blastogenesis in the type species. Unfortunatcly mature larvac are not available in any ol the known colonies of H. distomoides and this cannot yet be confirmed as a character of the genus

The genus is separated from Distaplia by the position of the gonads, and by the well developed vascular stolon with conspicuous muscle libres cxtending along it.

In addition to the type species (which is known from New Zealand) and H. distomoides, only one other species of this genus is known Hypsistozoa obscura Kott. 1969 from the Peru-Chile Trench. Otherwise the genus appears confined to southern temperate waters.

Hypsistozoa distomoides (Herdman, 1899)
(Fig. 49. Plate 10d-h)
4 maroucium distomoides Herdman, 1899, p. 72 Aplidium distomondes: Kott. 1957a, p. 95.
Distaplia distomoides: Kott 1972b. p. 170: 1972d, p. 243.

Disiribution
Ni.w Ricorios: South Australia (Great Australian Bight. QM GH969 GH1280 GHI294 GH2390 GH4178; Ward 1., QM GHI297; Spencer Gulf, GH4182; Yorke Peninsula. SAM E1987: Cape Jervis, QM GH114). New South Wales (Jervis Bay, QM Gi0044 GH52; Port Kembla, QM G9265 GH2004).

Priviousty Recorded South Australia (Great Australian Bight - SAM E1994 6 Kott 1972b). New South Wales (Port Jackson - Herdman 1899, Kott 1972d).

It is at temperate species, and is taken down to 20 m . At present it has a discontinuous range, with a gap between its South Australian and New South Wales records.

Descrifrion

Exilrnal. Appearance: Colonies consist of a long oval head, up to 4 cm long and 3 cm in diameter, tapering to a short fleshy stalk Zooids are arranged in rather crowded circular to long systems of up to 20 zooids. The test is soft and

Fici. 49. Hypsistozod distomoides: a, colony (QM GHIl4); b,c, 700 ids (QM GH114 G9265). Scales: a, 5mm; b,c. 0.5 mm .

1s. only slighty translucent in preservative. Living colonies are reportedly rusty brown, orange pookpurple or brilliant purple.
[afrval Sirnicture: Zooids are relatively small, the contracted thorax and abdomen (including the gonad) together being only 2 mm long. The postertor ahdominal vascular appendage is relatively wide with conspicuous muscle libres cxtending atong it. About 16 longitudinal and whlique muscles are on the thorias. the dorsal oncs corving out into the large, rounded. anterior lip "I the atrial aperture. Sis small lobes are around the branchial aperture which is on a siphon with as well developed sphincter There are 10 and 12 stigmata respectively in the postcrios and 3 dutcrior rows on each side of the hody. Each row is crossed by a parastigmatic wessel.

The oeseuphagus hends ventratly at right angles to its vertical proxinal part to enter the stomach about one third of the way down the abdomen. Itre stomach is short and barrel-shaped with 8 distinct rounded folds that tend oo latten toward the pyloric end where the stomach tapers slighty th the mid-intestine. The mid-intestine is only short, opening directly ino the rectum about wothirds of the way down the sbdomen. A distinat rectal valve is at the function of the mid-intertite and the rectum. A large gastre reservoir is piesent 181 the loop of the gut which is wide owing to the herifontal orientation of the stomach.

Heart and pericadiam are in the posterior end ol the ahdomen to the left ol the pole of the gut loop.

Gonads are in the lop of the vascular process, just behind, and sometimes slighty overlapping. the right side of the pole of the glt loop. They consist of ahout 20 relatively short, pear-shaped lollicles. their narrow ends projecting into the cemre to join the vas deferens, which curves posteriorly and then dorsally before extending anterumly to the atrial cavity. In zoonds collected trom Port Kembla in Scptember and Octoher one ar 2 embryos are in a narrow-lleched brood pouch attathed to the dorsal berder of the thoran just hehind the atrial opening. In one colony (QN (99265) these embryos tire lailed. and the trunks of the best develipped art ahout 1 mm long. They have an ocellus and an otolith in their cerebral vesicles. however no ather organs can be seen. It he barrow neck of the brood pouches is olten long. the pouch projecting well hehind the pooid tito the centre of the eolony. Colorien collected in March. April and May Irom South Australian fucalition contained maturing testes. but no developing embryos. The heart and pericardium
are in the posterior end of the abdomen to the left of the pole ol the gut lown.

RI Warks The species is distinguisled lion //. fasmeriana hy the relatively fow and wade stommach lolds. Despite the fact that this species belonge to a different genus. its rooids resemble thowe sl the Suuth Australian species Dishaplia pallida m.sp in which the stomach has the samb: hosifontal uricntation, and similar, although more numerthes, stomach folds.

Gcnus Neodistoma n.gen.

Iype species Niortistenta mammillatums n.sp.
This manotypm genus is characterised by its Distapfor-like zooids with a large atrial aperture and is lip lism the upper border, parastigmaico vessels, a distinct rectal valve a large gassic reservoir, and a conspichous vascular process. The characters hy which it is distinguished from Disonfia are its barrel-like (rather than kidneyshaped or oval) and distinetly folded stomach. and the 6 or more (rather than 4) rows of stigmata. There ate no conspicueum muscles on the vaseular appendage as there are in Hepsisforou.

Most bl the charackessate commontoall species of Chstaplar and the rectal valve is hnown int 1 .
 n.sp., and in /typsistozoa spp. The presence of more: chans a rows of stigmatia is unique in the Holozoidac. The genus is known only lrom South Ausiratias.

Neodistoma mammillatum n. 5 p.

(Fig. 50. Plate I a, h)
1)

 Sul, soll. V. Hohtats 10.483 , paratype. QM CH2424.

1) semarlom

Evilrnal Apreabance Colomien form wide, Hat cusdows. up to fem in diameter. The uppes surlike is uneven with ? 105 or more shallow conical prominences up to 1 cm high, each with a lareg temmat clowal aperture. Zoonds are in long douhle rows, one sow each side ol the canals that radiate from the terminal cloacal apertures A mass of vascular processes from the zonids is in the eentral test of the colony. The lest is suff and gelatinous. In preservative it is colourless and trabslucent. I ining colonies are ycllowish.
 long ind crouded vertically in the test. The

Fic. 50, Neodistoma mammillarum n.gen. n.sp.: a, colony (holotype SAM E1984); b,e, zooids (holotype SAM F1984, paratype QM GH2424). Scales: a, $5 \mathrm{~mm} ; \mathbf{b}, \mathbf{c}, 0.5 \mathrm{~mm}$.
branchial aperture has 6 wide lobes. The atrial aperture is a wide, asymmetrical opening, exposing the dorsal part of the branchial sac. Its asymmetry is related to the position of the zoosid in relation to the cloacal canal. A large anterior lip projects from the upper border of the opening. About 20 fine longitudinal and oblique muscles are on the thorax, including dorsal muscles that extend out into the anterior atrial lip. The thorax is relatively long, with at least 6 rows each of 6 stigmata. The parastigmatic vessels bisect the stigmata in cach row, to form additional rows. Following the horizontal division of cach row of stigmata, new parastigmatic vessels develop across each of the now rows. Length of the stigmata varies greatly in cach successive row. Small dorsal languets are on the parastigmatic vessels, alternating with the larger processes on the primary transverse vessels.

The abdomen is only about one-third of the length of the thorax. The oesophagus is narrow, and is either vertical, opening into a vertical stomach about hallway down the abdomen, or it is bent ventrally to open into a horizontally oriented stomach. The stomach is short, barrelshaped, and has about 12 distinct, wide longitudinal folds. The mid-intestine is narrow, opening into the rectum at the posterior end ol the descending limb of the gut loop. A conspicuous rectal valve is present. A large gastric rescrvoir is in the gut loop. Gonads are not mature in thesc specimens, and only occasionally is a small ovom found projecting from the body wall in the gut loop.

Therc always arc numerous non-functional replicates scattered amongst the functional adult zooids.

Rimarks: In addition to the unusually large number of rows of stigmata, this species can be distinguished by its well-formed stomach folds and the small number of stigmata in each row. Additional sampling is needed to acquire specimens in which gonads and laryae are mature.

Genus Sycozoa Lesson, 1830

Type species; Sycozoa sigillinoides 1esson, 1830
The genus is characterised by its regular, highly organised and always stalked colonies in which the zooids are in double rows along each side of vertical cloacal canals that extend, parallel to one another, down the sides of the head of the colony. The stalk is sometimes short, thick and fleshy as in Distaplia, but in several species of Sycozoa the stalk is long, thin, hard and leathery. lobes around the branchial apertures are reduced and usually absent altogether. The body musculature is reduced. Apart from some fine bands around each aperture, the body wall has only a few (not more than 5) fine muscles on the thorax, none on the abdomen. Parastigmatic vessels are never present, and the 4 rows of stigmata are in two pairs in which the adjacent ends of the stigmata of each pair-partner line up along each side of the transverse vessel that separates them. At their opposite ends the stigmata progressively reduce in length toward the endostyle, leaving a large triangle of unperforated pharyngeal wall between the ventral ends of the second and third rows of stigmata. There is also an area of unperforated pharyngeal wall both anterior and posterior to the perforated section. The atrial cavity extends only over the stigmata, not over the unperforated parts of the pharyngeal wall consequently the ventral part of the cavity is separated into twa pouches by the friangular area between the ventral ends of the second and third rows of stigmata. The stomach is smooth walled and pear-shaped It opens into a short duodenal area that is only slightly smaller in diameter than the distal part of the gut, with which it forms a smooth cylindrical tube without subdivistons: A small gastric reservoir is present in S. cecebriformis and accasionally in S. sigillinotides, but not in other species. Gonads are either in the gut loop, or spill out behind it, or are contained in a sac protruding from the side of or behind the abdomen but never much constricted from it. A brood pouch from the postero-dorsal comer of the thorax sometimes is long and curved at its distal end. It contains up to 40 developing embryos, the largest numbers being in Antaretic species. Variable numbers of embryos are brooded. Usually colonies are
droeciaus and all the heads of a compound colony are of the one sex. However, with apparently fong periods when gonads are not developed, it is not known whether a culany remains the same sex throughout its life. Onty in one species are there male and female zooids present at the same time in one colony (S. anomala Millar, 1960). Larvac are released from the top of the progressively disintegrating head of the parem colony, which sometimes, detached from its stalk, forms a large floating brood sac.

Replication from isolated vegetative stolons in the stalk of the colony is prolific, zooids being added to the systems at the top of the stalk. Stalks persist after disintegration of the heads and new heads develop from the vegctative material stored in the stalk (Caullery 1909; Salfi 1925a, 1926; Millar 1960).

Larvae of Sycozoa have a large irunk, well developed adult organs, and triradially arranged adhesive argans, 2 dorsal and one ventral, each with a large axial cone set in a deep epidermal cup at the end of a smooth elliptical stalk. The byaline cap on the axial cone is often large. There are no ectodermal ampullae and no frontal plate. The ectoderm and test of the stalk of the adhesive organs appears specialised in some species (sec S. pulchra, S. brevicauda 0.sp.) and may have secretory cells and be adhesive. The ocellise is absent. Larval budding in Sycozoa, as in Distap/la. is never as prolific as it is in Hvpsistozoa, nor do the buds develop to blastozooids as they do in the latter genus. However in some species of Sycozou (S. pulchra and S. brevicauda n. sp.), the vegetative stolon (the left epicardial sac) is long and conspicuous and persists in the larval trunk after the buds have formed.

The form of the systems does vary. Usually each long canal has a single opening, the openings arranged around the margin of the free end of the head. There they open cither directly to the exterior, or into a terminal cloacal cavity with a central apicaL opening. Untike Distaplia the rows of zooids never converge onto the upper surface of the head. In a few species canals expand into the centre of the head, becoming confluent with one another, and creating a large internal cavily that opens by a single terminal aperture as in Cyathocormus Oks, 1912. The lattes genus was erected to accommodate a species (C. miratilis) in which the double rows of zooids typical of Sycozua are embedded in the eylindrical walls of a stalked, cup-shaped colony and project into the central cavity in parallel longitudinal tidges of test. The atrial apertures open directly into the central cavity in the long furrows between the double rows
TABLE 6. Summary of Characiers of the Species of Sycozoa Recorded from Australia

Species	'Biogeographic description	${ }^{2}$ Range around Australia	Zooid-bearing part of colony	Stalk	Stigmata (per row)	Testis follicles (number)	Larval trunk (length, mim)	Other
S. cerebriformis	A,te	Shark BayPort Stephens	flat, pleated continuous lamellae	short, thick fleshy	13-14	4-5	$\begin{aligned} & 0.8- \\ & 1.1 \end{aligned}$	gastric reservoir present; one embryo per brood pouch
S. seiziwadai	WP,tr	NSW Cape Jaubert	flat, fan-shaped lamellae fusing with one another	"	12-14	6	0.6	one embryo per brood pouch
S. murrayi	A,te	SA-NSW	flat, paddleshaped	short. narrow firm	1214	5	0.7	test firm, dark
S. brevicauda n.sp.	A,te	Port Hedland SA	flat, fan-shaped	long, narrow firm	10-12	9	0.6	root-like hairs at base of stalk
S. pulchra	A,tr-te	DongaraTorres St	inverted coneshaped	"	1416	6	1.5	root-like hairs at base of stalk; papilla on abdominal wall
S. pedunculata	A,te	King George Snd-NE Tasmania	inverted cone shaped	long, narrow leathery	14-20	810	0.9	-
S. sigillinoides	PSP	SA, Tas.	conical, terminal cloacal aperture		16-26	12-18	$\begin{aligned} & 0.4- \\ & 0.76 \end{aligned}$	cloacal canals and terminal chamber; terminal cloacal aperture
S. cavernosa n.sp.	A.tr	Dampier Arch. Cockburn Snd	conical, terminal cloacal aperture	short, thick fleshy	10-12	5	?	central cloacal chamber; terminal cloacal aperture; posterior abdomen present

${ }^{1}$ A. Indigenous; P, Antarctic; SP, Subantarctic; tr, tropical; te, temperate. ${ }^{2}$ Range given anticlockwise around the continent.

W' souds. Sprozoh iowernosa no. sp. From Western Australia has such a clobeal systum. In smallet follomes the head is cup shaped as in the dapancese species. In latger exalonies the upper third of the head has an identical open cloacal cavity, although In the midde third of the head there is a centrat tore of test connected to the outer pooid-bearing layer by horizomtal radial test connectives. The lowet part of the head, where new replicates are being added to the system, is solid. Further up, the backward expansion of the cloacal cavity tends lo partially separate the eentral test firm the outer sooid-hearing layer. Ihis claboration ul the cloacal cavity does not justify the separation of the genus Clathoropmus from Syeozrow, and the genera are treated here as synonyons.

The homologue of the large internal cloacal savity of S. carermose ean be observed in some specimens of S. sigillinobidos when the terminal Elowal cavily enlarges as the top of the hew heqins In dosintegrate (ocleasing its larvae). 'The atrial openings of the rooids ate thus exposed directly (1) The cenlral catity.

In species with separate openings of cloacal cautals allound the margin of the upper surface at the thead, disintegration of the terminal central test sometimes leaves a concavity that can be mastahen for a chatal cadity with a wide terminal opening.

Difficulties in interpreting the exacl location of choracal aperlures that arise from the disintegration wl the top ol the head were observed by Michaclsen (1924) . and Miltar (1960). Their location is also ohscured by the lact that they become large, extending down the sides of the collony in a deep \forall, and exposing the cladcial cantals with the atrial apertures of the fonids directly to the exterion.

Since headtess stalks persmot, and the isolated segetative stotons contaned in them subsequently produce new pooids and rementerate new heads, the colonies are prohahly long-lived. Much of the variability observed probably is causcd by grovith, this being rapid resulting from prolitic seplication "t zoolds. T he presence of numbers of heads tron a single basc probably results from growth following regression of a single head (Millar lyti) and is not necessarily indicative of a genefic difference from individuals with single heads and unbranched salks. There is Jatle intraspecitic variation either in the numbers oll stigmata in each sow, or in the shape and texture of the head and the stalk, or in the numbers of textis lollicles. Thus it is these chatimetrs thot must be ased to distinguish the species. for the shape of the Abomatill. the condition al nes wall and the condso
of the gut are atl remarkably constant throughout the genus.

The genus is relatively diverse in Australian waters where of the 14 known species have been recorded. The Australian records comprise 5 indigenous spectes, two uropical Weat Pacific species (S. seiziwadai and S. pulchra) and one Antaretic species (S. sigillinoides).

The Antarctie members of the genus have wide geographic ranges. Their larvae lack an ocellus that would attract them into shaded settement sets, and in any case shaded places seldom oweut in their opers sea floor habitats. Accordingly, heir settement sites are not restricted, and this mat commibutc 10 gene llow (Berrill 1955). The exems appears to have Antarctic affinties. Sirorom heursas fiom Japan, is the only species that extends moth of the ropical western Pacific: and although the two known Antaretic species, S. sizillimoiden and S. geargiana (sce Millar 1960). and Kott 1967) have at wide cireumpolar bange intle Southern Oecasm, the genus has not oherwise been recorded from the Atlantic Ocean. The Western l'acilic bopical speces and Australlain temperate species have clear afinilitics with the Fauna of the Southern Ocean, lite. S. veimiwalai with the South Aisican S. arhoremems, and .i. pedelora. S perdmo wata and S brevicateda n.sp. with S. sigillimodes. The Australian continent appears to howe served as a bridge between Antache and menceal waters for madiatian of this genns

Kevio Sprenr or thl Grats Sicomol

1. Cloateal aperture single in centre of lifee end of head.
Cloacal apertures rumerous armond nuter margin of free end of had 3
2. Zooids embedded in longitudinat riftees projecting into a centeal cloacal casitg. gonads posterior to the gut laon Sicozasa casertanar n. sp. Fonds nut emhedded in longutudial ridges projecting into central cloacal cavity; gonads at the side of the gut loong Syevzona sigillinomes
3. Bane of stalk with rout-like hairs.......... \&

Base ol stath whous root-like hairs 5
4 Papilla presens an hody wall over pylorie end ar stomach Sperona pulchera
1'apallas butt present on body wall over pylome end of stombeh. Sreozoa brevieauda n.sp.
5 \%omel hearine patt ol colons pleated
Sycozoa cerchritumio
Looid beasing part of colony not plented. . of
6. Stalk thin and leathery, and very much longer than head \qquad ..Sycozoa pedunculata Stalk not thin and leathery, and not very much longer than head . 7
7. Stalks branch; test not firm and darkly pigmented........... . Sycozoa seiziwadai Stalks do not branch: test firm and darkly pigmented.............. . . Sycozoa murrayi

The species known from adjacent areas are:
Sycozoa anomala Millar, 1960 (see also Millar 1982) from New Zealand has its gonads in a posterior abdominal sac (as in S. cavernosa n.sp.), a terminal common cloaca, narrow rather than flcshy stalks, small branchial lobes and occasionally hermaphroditic colonies.
Sycozoa arborescens Hartmeyer, 1912 from South Africa has colonies with fleshy branching stalks that resemble those of S. seiziwadai (see Michaelsen 1923, Millar 1963a). However each zooid-bearing head has a terminal cloacal cavity with a central aperture rather than separatc openings around the head.
Sycozoa gaimardi (Herdman, 1886), known only from the Magellanic region (see Kott 1969) has dome-shaped heads on slender stalks.
Sycozoa georgiana (Michaelsen, 1907) a circumpolar Antarctic species has a more restricted range than S. sigillinoides, not extending north of the Antarctic convergence. Its main characteristic is the short zooid rows resembling those of some specimens of S. seiziwadae, however it has the single cloacal aperture and narrow stalk of S. sigillinoides.
Sycozoakanzasi (Oka, 1930) from Sagami Bay, Japan, resembles S. pulchra in the presence of a knob over the stomach, a narrow stalk and basal roots. It is distinguished by its single terminal cloacal apcrture (Tokioka 1953, Millar 1975)
Sycozoa mirabilis (Oka, 1912) from Sagami Bay is distinguished from S. cavernosa n . sp . by its cup-shaped rather than cone-shaped colony, fewer zooids per vertical row, and the much shorter and fleshicr stalk supporting the zooid bearing head.

Sycozoa brevicauda n.sp.
(Fig. 51)

Distribution

Type Locabity: Western Australia (Cockburn Sound, coll. Western Australian Naturalist 28.5.58, holotype WAM 139.75; off Eglinton Rocks, on floor of cave at about 45 m , coll. P. Roberts 22.12 .75 , paratypes WAM 801.83; 71 nautical miles N. of Port Hedland, 81-2m
on sand, coll. L. Marsh and M. Begant, paratype WAM 1046.83).

Further Records: Western Australian (Steep Point, QM GH4364; Houtman's Abrolhos, WAM 804-5.83). South Australia (Grange, SAM E2011).

Description

Exterval. Appearance: The colonies consist of a flattened, fan-shaped head up to 3 cm wide at the widest point. The head is supported on a long (up to 8 cm) narrow stalk, sometimes several arising from a common basal stalk that, tuberlike, runs along the surface of the substrate. The stalk is relatively hard, with a tough outer cuticle. Zooids are in vertical double rows that radiate out along the fan-shaped head. The lower half of the fan contains non-functional vegetative zooids from the vegetative stolons in the stalk being added to the double-row systems. The upper, wide part of the fan contains rows of up to 20 functional zooids. The long cloacal canals between the double rows of zooids open around the zooidfree, flat, narrow, arched terminal surface of the head. The stalk narrows toward its base where it terminates in a clump of hair-like roots that have a mass of sand entangled in them. Sometimes (apparently wherever it touches the substrate) clumps of roots along the length of the stalk provide supplementary points of attachment.

Internal Structure: Zooids are about 2 mm long, the thorax and abdomen of about equal length. Branchial lobes are absent and the atrial aperture is the usual wide opening into the cloacal canal. It is asymmetrical, the shape of the opening dependent on the side of the cloacal canal on which it is located. The branchial sac has 12 stigmata in the anterior pair of rows and 10 in the posterior rows. The stomach is comma-shaped, tapering to the intestine. The intestine and rectum together form a continuous cylindrical tube without any divisions in it. The stomach is slightly obliquely oriented. Gonads are contained in the gut loop, projecting from the posterior end of the loop when mature. Colonies are dioecious. Up to 9 long male follicles lying parallel to one another in a barrelshaped clump are in a zooid from a male colony. The vas deferens curves posteriorly from the outer end of the clump of follicles before extending anteriorly with the rectum.

Brood pouches containing an embryo and one egg in the upper part of the head of specimens collected from Port Hedland in October (WAM 1046.83) and in the holotype specimen collected in May.

Larvae are relatively small, the trunk only 0.6 mm long, with the tail barely reaching its anterior end. There is an otolith but no ocellus.

Fic. 51. Sycozoo brevicauda n.sp.: a, colony (holotype WAM 139.75); b, rooid (holotype W \wedge M 139.75); c. larva (paratype W \wedge M 1046.83); d, adhesive organ showing hyaline cap in ectodermal cup (paratype WAM I046.83). Scales: a, $1 \mathrm{~cm} ; \mathbf{b}, 0.5 \mathrm{~mm} ; \mathbf{c}, 0.1 \mathrm{~mm} ; \mathbf{d}, 0.05 \mathrm{~mm}$.

The left epicardial sac is long, narrow, and persists, projecting anteriorly from the left side of the gut loop to lie between the thick elliptical stalks of the 3 triradially arranged adhesive organs. These stalks diverge from one another and project from the anterior end of the trunk, eaeh surrounded by a layer of test. Ectodermal cells of the stalks have fine cilia-like extension through the test, and these form terminal expansions at the surface.

Remarks: The species resembles S. pulchra in the presence of a long, narrow stalk with clumps of hair-like roots fixing to the sandy substrate. However, the head of the present species is wide and flat, the head of S. pulchra being cylindrical in section and more like an inverted cone. There are slightly fewer stigmata per row, and 9 (rather than 6) male follielcs in the present species. The projection from the body wall over the pyloric
end of the stomach, characteristic of S. pulchra, does not occur in the present species. Larvae are also similar, with a long epicardial tube, deep adhesive organs, and unusual ectodermal cells on their stalks. However the larval trunk of the present species is about half the length of that of S. pulchra.

Sycozoa cavernosa n.sp.
(Fig. 52)
Disiribution
Type Locality: Western Australia (olf Whitford Beach, Cockburn Sound, reel 5m, coll. L. Marsh 16.2.79. holotype WAM 795.83 QM GH2106; off Whitford Beach, 3.4 m , coll. L. Marsh 16.11 .79 , paratypes WAM 879.83: Woodmans Point. Cockburn Sound, coll. A. Brearlcy 31.12.74, paratype WAM 199.75).

Furihir Records: Western Australia (Dampier Archipclago, WAM 1000.83: Cockburn Sound, WAM 219 20.73 805.83 807.83, QM G9653).

Fig. 52, Sycozoa cavernosa n.sp.: a, maturc colony (holotypc WAM 795.83); b, young colony (WAM 1000.83): c. diagram of interior of the head: d. juvenile zooid with precocious gonads (paratypc WAM 879.83): e.f. female rooids (paratypc WAM 199.75 1000.83), g, malc rooid (holotype WAM 795.83). Scales: a, Icm; b, $2 \mathrm{~mm} ; \mathrm{d} .1 \mathrm{~mm} ; \mathrm{e}, \mathrm{f}, 0.5 \mathrm{~mm}$.

The species has been takert down to 18 II. It has not been taken outside Cockhurn Sound

Description

External Aprearance. Colonies are conical. pointed heads up to 7 cm 7 ong and 3 cm dameter at their base, on more or less cylindrical stalks about lcm in diameter narrowing slightly toward the base usually about the same length as the head, but occasionally longer. Basally each stalk breaks into short bair-like projections which, when entangled with sand, create a small and more or less spherical holdfast. A large cloacal eavity in the top of the head has a large terminal opening. Zooids are in the outer layer of test, arranged in double rows extending down the sides of the head of the colony. Double rows of zooids are embedded in longitudinal ridges of test that project into the internal cavity. In the lower part of the head the terminal cavily continues down separating the outer zooid-bcaring test from a central core continuous with the stalk. The suter zooidbearing layer is joined to the central core by radial connectives, which are strands of test about 3 mm in diameter that extend horizontally from the central test core and cross the cloacal cavity to join the zooid-hearing ridges of test. Vascular appendages of the zooids extend through these connectives, into the inner core and thus down into the stalk. Atrial apertures of zooids open directly into the cloacal cavity between the projecting zooid-bcaring longitudinal ridges. Capacions cloacal spaces in the heads of mature colonies cause heads to be flaccid in preservative. Colonies in which vegetatively produced zooids are maturing have less extensive cloacal spaces and are firmer, while in one small colony the center of the head is an open cloacal space without any central test core (WAM 1000.83). The colour of living colonies is not known. In preservative they ate beige with grey zooids.

INTERNAL Structure. Zooids orient obliquely in the colony with their atrial apertures uppermost (opening into the adjacent cloacal canal), with their abdomina and posteriot abdominal sacs projecting into the radial test connectives. Thorax and abdomen together are up to 2 mm long. The posterior abdominal saci is about half that length only when the male gonad is mature. The small branchial aperture is not lobed. The atrial aperture is large. the sides of the aperture being drawn back to expose most of the branchial sac to the cloacal cavity. The upper border of the upening is produced into a rounded lip. Finc muscle bands are in the thoracic body wall, but are inconspicuous and not numerous, There are 12 long
rectangular stigmata in the 2 anterior rows and 10 in the 2 posterior rows.

The pear-shaped, smooth-walled stomach. tapering to its pyloric end, is halliway down the abdomen. No other divisions of the gut were observed.

Gonads occapy the narrow-necked sac behind the abdomen. Male and female gonads are never present together, and all the zooids in the colons are of one sex. Mature testis follieles (5) are in paratype material collected in November (WAM $879.83)$. Mature inva (310 5) are in a colony collected in December (WAM 199.75) and in this colony up to 3 early embryos are in a long brood pouch with a short, narrow neck connecting it to the postero-dorsal corner of the thorax. Colonics collected in September (W AM 21920.73) have only immature zooids, an incipient posterior abdomen without contaned gonads being present, and in these colonies the cloacal cavities are more limited. In colonies raken in Jurne (WAM $805,83,807.83$) the head is relatively firm. there are no gonads. only at few cloatal spaces and no eloacal aperture, and the zooids are juveniles, embedded in the test.

Apparently sexual reproduction oceurs at the beginuing of summex (December) and larvat may be released in January and February. Thereafter the zooids may regress, vegetative zoods reappearing in June, developing through late winter and spring (August to November), Larvac of this species are not known

Remakk. The extensive internal cloacal cavity with longitudinal ridges fontaining embedded cooids) projecting into it, and the wide terminal aperture, together with the smonth outer surface of the colony readily distinguish it. The head of the juvenile specimen (WAM 1000.83) resembles S. mirabilis (Oka, 1912) although Oka's specimens were larger with a short fleshy stalk and appean not to be conspecific with the present species Gonads were not developed in S. mirabilis. Theie presence in a posterior abdominal sac in the present species. as in some specjes of Distapfla. resembles Siect=oa anomala Millar, 1960, however Millir's species (from New Zealand), does not have the open cloacal cavity of the present one.

Sycozoa cerebriforms (Quoy and Gaimard. 1834) (Fig. 53, Plate 11c h)
Aplidic cepebriforme Quoy and Gaimand, 1834, p. 62 Sycnzou cerchrifarmus: Brewin. 1953, p. 58. Koth, 1957a, p. 29; 1972a, p, 8; 1972b, p. 171); 197k, p, 57 Millat 1963a, p. 708: 1966a, p. 365.
Dis/oplia serehriforme: Michacken, 1924, p. 325.
Colella plicuta Herdman 7*90, p. 0 ?
Colella interta Cuullerv. 1909, p in.

Fr, 53, Sycozoa cerehriformis: a, young colony (QM G9637); b. rood (SAM F2020): c, juvenile vegetative cooid ISAM E2013): d.e, abdomens of male and female 7ooids (SAM E2021); f, tarva (QM GH2405). Scales: a. $1 \mathrm{~cm} ; \mathrm{b}$-e, $0.5 \mathrm{~mm}: \mathrm{f}, 0.1 \mathrm{~mm}$.

DISTRIBTITON
New Reeongos: Western Austratia (Shark Bay, WAM 797.83; Houtman's Abrolhos. WAM 805 6.83; Dongara. WA M 1047-9.83: Cockburn Sound. WAM 159.7421 .75 $24.7587 .7594 .75131 .75209 .75219 .82798-800.831043$ 4.83). South Australia (Great Australian Bight. S/M E2001 E2011 F2014-5E2021: Nuy1s Archipelago, SAM E2019-20 E2030, OM GH4214: Spencer Gulf, SAM ト2012 E 2017 E2022 3 F2025 9 E2045; St Vincent Gulf, §AM E1954-6 E1958 E2018 E2024. QM GH2405 GH4224: West J. SAM E2013. QM G9264 GH2405). Victoria (Gabo 1., SAM E2016, AM Y2137; Bass Strait, QM G12735 GH2393 4. MV 11462 H475 H929). Tasmania (Swansca. I M D93 D) 91 Port Davey QM GH1844). Now South Wales (Bateman's Bay. AM Y2147; Jervis Bay, QM Gi0015-6; Port Kemblic. OM G9262, Porl Stephenx. AM Y2135; Monavale $\triangle \mathrm{M}$ Y2136; Port Jacksont. AM Y2188: Nambucea Heady QM G10009; Solitary 1. QM G9637; Cook I., OM GH4223). Qucensland (Monloolabah. QM (illof07).

Prevalousty Ricorozed: South Australia (Cireat Austrulian Bight QM G9263 Kott 1972b; St Vincent Gulf - Kou 1957a. SAM D268. QM (i9317 Kon 19728: West I., Wright I. Kott 1972a). Victoria (Western Port, Port Phillip Bay - Quoy and Gamard 1834. Caullery 1909, Kott 1957a 1976. Millar 1963a 1966a). New South Wales (Jervis Bay, Port Hacking, Port Jackson, Port Stephens - Herdman 1899. Kolt 19578, Millar 1963a).

The colonies from Dongara and Shark Bay (WA) are all small and these may represont populations at the northern extremity of the range of this tomperate indigenous species. The species is taken in eaves and erevices off reefs, and dredged off the sea flone at depths down 1050 m .

DFSCRIPICON

External Appearancl. The colony consists of a relatively shor (usually not more than $1,5 \mathrm{~cm}$ long) fleshy (up to 3 cm in diameter) stalk that Battens out at the top where it expands into a flat, ribbon-like, yooid-hearing lamella up to 2 cm high. Occasionally the stalk is longer (up to 7 cm) and cylindrical. The top edge of the zooid-bearing lamelta is flat and zooid-free. In young colonies the lamella is merely llat and spade-shaped. but as the colony develops it increases in width. At first it curves around at each end, its junction with the top of the head being horse-shoe shaped. Subsequently it becomes long and is gathered and pleated onto the top of the stalk. One colony (SAM D268) has a lamella that is 74 cm wide, gathered anto the top of a stalk of about 3 cm diameter to makc a complex rosette sem in diameter. Sometimes the basal stalks branch, each terminal branch having an expanded zooid-bearing pari that usuatly fuses with that of its neighbour. A thin layer of test sometimes connects the branches of adjacent stalks.

Zooids are in parallel double-row systems down each side of the flat lamellac. Each cloacal canal opens by a separate large aperture at the top of the canal, the apertures are around the margin of the flat, natow upper sutitee of the lamella. The double row systems seldom contain more than 8 functional zooids in each row. These occupy a band ahout Itm wide along the upper part of each side. The lower 1 cm has a band of nonfunctional replicates progressively joining the vertical rows of functional zooids, and, lower down, just above the stalk, the basal stolons of the adult zooids converge into the stalk. The surface test is covered with minute, evenly spaced inconspicuous pointed papillae

In life, specimens of this species with their tightly pleated rosette-like colonies are spectacular. A range of colours is known. Collector's notes for colonies taken from 25 m off Mooloolaba (QM G10107) indicate they were yellow, but changed to purple when damaged or removed from the substrate. Specimens pholograpted in sifu are blue, pink, red, orange, or yellow. In preservative they are sometimes translucent blue, pink or стеаm.

Intranal Simbether: Mature zooids are up to 2.5 mm long, belicate, with thoraces collapsed in preserved material, but never contracted. Muscles are around the apertures, but only about 5 line muscles extend from the branchial siphon a short distance down each side of the pharynx. There are 14 stigmata in the anterior pair of rows and 13 in the posterior rows. The oesophagus is faitly long, the small oval stomach slightly oblique, the gut loop almost vertical, and a small spherical gastric reservoir is in the gut loop.

Colonies are dioccious. Gonads are on the right side of the gut loop. The ayary contains up to 3 ova, and the testis 4 or 5 wedge-shaped follieles arranged in a tight circle. Short vasa efferemia fromeach follicle join the vas deferens in the centre of the circle, The vas deferens then makes a short loop posteriorly before extending anteriorly along the inside of the rectum.

The breedirg season for this species appears short. Colonies collected from Sonth Ausiralis trad mature mate and fomale gonads in May (SAM E2021). Fmbryos are in one colony taken in April (SAM R2()14) and ane in May (QM GH2405), Although gonads are sometimes present in Match. July and October. they are not mature. Gonads were not present in any of the specimens collected in January or February. Material was collected fromt western Australian waters in all months except January und Tebraary. Most sexually
matule colonies were males taken form Ochober IU December (WAM 9. 4.75802 .83131 .75798 .83), although one mature male colony was taken in May. Onc colony with larvale and emhryos has taken from Cockburn Suund in December (WAM 799.83). In general, the species reproduecs sexually in spring and autumn. The significance of the preponderance of male colonies present in the collections is not understood

In thas speces there is only one almost spherical embere in cach broond potich the larval trunk is 0.8 to I.tmon loug and the tail is wound one and a half times around it. There is an otolith hut wo ocellus. and neither epicardial tube nor buds lave been detected. The adhesive organs ane large with tall. narrom axial cones and epidermal cups. and short, thick stath . Fiach adhesive organ protrudes from the anterior end of the trunk surrounded by a layer of test.

Remarks. The hlat, ribbon-like, pleated. 700 d bearine part of the colony, together with the short systoms containing less than 10 lunctional fooids per pow are elintinetive characters. I-urlter this is the only species of the genus in which a gastric resurwir ss always present, though s. sisillinoides. sometimes has one (Kott 1969).

Sirozoda hrevicauk n. sp. which also has a flatiened head. does not have the short rows of fonids nor the ribbon-shaped head of the present species (its head being [an-shaped); nor does it have the short fleshy stalk of the present species.

The speces appears related mosi closely to the tropical S. seiznadar. which it resembles in having branched fleshy stalks, shost systeths, relatively few male follicles, a single larva in each brood pooch. large larval adhesive cones and no conspicuous epicardial tube extending lat the Iront ol the larval trunk. Spozou semziwdedai is distinguished from the presenl spectes by its narrower zooid-bcaring heads that are not pleated, a longer and narrower gat loop. the absence of a gontric reservoir, and a maller larval with a shorese tail and larval buds.

Sycozal murrayi (1fordman, 1886)
(Fig. 54. I'late 12a)
Copethe memrest Herdman. 1886. p. 115, var, rubuda p. (11).

Sicesoa murrait: Kotr. 1957a, p. 97.

- S! cobera inmmmeides Kote, 1454, p. 157.

Now Rocraras Somh Austratad (Ciptal Austratian Bight, OM (iH+155: St. Vincern Gulf, QM (iltaze) Faxmanaa (Midway Point 1 M Dll87: forthatern Tamania, I ท (31835).

Prıviln sty Recomporn Tismamiv (off Marial. A.NY1231 Kot 1954). Victoria (Bass Sirail Ilerdman 1886\}. New South Wates (olf Port)ackson Var. rubida Herdman 1886: Bermayui - Kon 1957al.

The species appears indigenous and temporate. ranging from the Great Australan Bight o the vicinty a) Porr Jackson.

Dess.rution

Evierval Arparaver: Colonies have a flattened and paddle-shaped, or a smooth oval, stalked head. The newly recorded specimens have healls 2 em long, about 1 cm wide actoss the middle or widest part and only about 0.5 cm thick. Posteriorly the head tapers to the barrow firm, short stalk that is never more than slightly longer llan the hoad and lacks an outer hard cuticle. The stalk narrows toward the base and terminates ill at rather blunt poins without breaking into either rools or hairs The lower part of the stalk adheres, aloug its length, to the sustrate (weed stems, tronds). In specimens recorded by Herdman (1886) and Kott (1957a) the stalh is shorter and thicher.

The test is unusually firm. containing theishblack pigment particles present also in the body wall of the zooisls which are in vertical double row systems, with the cloacal canals opening around the upper margin of the head.

INTRRVAI Strittirk Zonids are of the usud form, aboul 2 mm long with 12 to 14 stigmata ner row. The stomach is slightly obliquel! oriented. wide anteriorly and gradually decreasing in diameter toward the pyloric end where at is continuous with the intestine. There is no gastric reservoir in any of the examined material. The gut lown is vertical. The body wall has no papilla over the pyloric end of the stomach. No gonads occur in the newly recorded material. Male gonads were in the specimen from Bass Strait (Herdman 1886). They consist of ovate male lollicics (Herdman 1886). In an obliquc. almost longitud. mal section 5 follicies are seen (Herdman lssk. pl, 17, lig. 10) specimens from the NSW coast (koti 1957a) have mature ovaries, embryos and tailed larvast.

The larva has a relatively short lrunk 0.7 mm long. The 3 adhesive organs, triradially arranged. are on unusually short, thick stalks. The axial cone of athesive cells with its epidermal cup is farticularly large. The tal is long (more than 2 mm) and winds around the trunk nearly one and a half times. There are no rudimentary buds in the larval test and the epicardial tube was not detected.

RI makks: The unique chatacters of this species are its relatively lirm and pigmented test. short stalh that is much the same consistoncy as the test of the zooid-bearing head, and the size of

Fio 54. Sidosoo murrave an colony (CH 4155): b larva (AM, off Bermagui) Scales: a. 1 cm ; b, 0.2 mm .
the larya. The large axial cone of cells in the adhesive organs resembles that of S. cerehriformis. The head is sometimes flattened as in S : brevicauth n. sp., but the stalk is shorter and lacks the terminal hairs of the tatter species. Sycozoa murray is distinguished from S. pulchra and S. peduncillata by its liattened head with firm test, and ith short stalk.

Although the stak was shorter and thicker than in the newly recorded specimens. Herdman (1886) recorded the eharacteristically lirm pigrnented test and flattened colonies in describing this species.

Sycoroa pedunculata (Quoy and Gaimard, 1834) (Fig. 55. Plate 12h)
Iplidie peeluncularum Quoy and (iamard. 1834. p. 626.

Not Aplidiun pedunculanum (1unnngham 1871. p. 490 (< Svazoa sigillinohles).
Colellapedunculata: Caullery, 19(6) pp. 14. 30 (specimstr from King George Sound).
Not Collela pedtumulara Herdman 1886, p. 74. Pfeffer. 1889. p. 4: 1890, p. 499. Sluiter. 1900, R. 5: 19064. p. B (e Sycozers sigillinaides).

Not Sycozo pedunculaid: Kott. 1972b, p. 170; 1975, p. 2: 1976, p. 45 (S Slewooa pulchra): Kot1, 1972d. P. 243 (< Symzaa seiziwadai).
?Sicoend sesilliwides: Michatsen. 1924. p. 505 (pari. specimens from Tianania, Bast Strath, Wentern Forll. 1430, p. 505 (part. specimens from Albany).
Desiriba ition
Nrw Ricombs: Vichoria Portsta, QM Gl0120: Western Port, AM Y2148: Bass Strat, MV H449, ©M G12747) Tasmania (Port Davey, QM GH2022 GH2025: southern Themana. I M D708; southcastern Tasmania. TM D2025; Huon Channel. TMD1858; d'Fntreasteauk Channel, IM D276; Derwent Estuayy, TM D103, 573 D7ノ D713 D791 2: northasmern Tasmama. ' M D18357.

Priviensis R Recominiz: Western Australla (King George Sound Quoy and Gainard 1834, " Michaclsen 1924, 1930). Vichoria (Bass Strait PMichaclsen 1924; Western Port Quoy and Gaimard 1834.? Michaclsen 1924). Tasmania - ? Michaclsen (924).

Description

Extirnal Appraranct Colonies have an inverted concal rooid-bearing head (up to 2 cm long) on a long (up to 9 cm), hard stalk. The flat, terminal zooid-free top of the head is from I to 1.fiem in diameter, and is the widest part of the head. Bawatly. the stalk breake into short branches that attach directly to a hard substrate. Up to 20 zooids in about 20 parallel, vertical doublerow systems are evenly spaced around the head. The cloacal canals have wide openings around the outside of the margin of the flat terminat surlitee of the head. In one colony from Tasmania (TM D708) 5 heads are at the wof of the leathery stalk of the colony.
In the specimen from Sandy Bay (TM D711). the central test is withdrawn from the top of the head, leaving pooids embedded in the outer layer of test surrounding a terminal cavity and giving the impression of a terminal common cloaca with a large opening. However, this is an antefact. The eloacal canals open around the outside of head as is characteristic of the present species and not into a terminal cavity as they do in S. cavermosa n, sp.
intarnat Strlectirl Zooids are relatively large for this genus, from $3 t 04 \mathrm{~mm}$. The branchial aperture is smooth. The atrial aperture has a wide rounded upper fip. There are 19 or 20 stigmata per row in one specimen (QM G10120), but other

Fig. 55, Sycozoa pedunculata: a, whole colony (QM GH2022); b, head showing arrangement of systems (QM G12747); c, male, contracted zooid (TM D708); d, larva (TM D711). Scales: a, $1 \mathbf{c m} ; \mathbf{b}, 5 \mathrm{~mm} ; \mathbf{c}, 0.5 \mathrm{~mm}$; d, 0.2 mm .
colonies have unly 14 to 16 stigmata per row. The smooth stomach is slightly obliquely oriented. It is wide anteriorly, and posteriorly it tapers to the intestine. Neithet a constriction nor a valve is between the Intestine and the rectum, that part of the gut distal to the stomach forming an even eylindrical tube. No papilla is present on the body wall oyer the pyloric end of the stomach. Gonads are enclosed in the gut loop.

The female gonad consists of a large (up to 7 egg) ovary. The mature testis consists of 8 to 10 long follicles arranged in parallel to form a wide, barrel-shaped clump that juts out From the side of the gut loop. The vas deferens makes the usual posterior loop from the distal extremity of the testis before extending anteriorly atong the rectum. Mature male gonads are present in colonics collected in September and October from southern Tasmania (TM D708 D2025). In the Bass Strait material one colony (QM G10120) is lemale with large eggs in the ovary, however embryos are not present. Embryos were in the type specimen (see Caullery 1909, fig. 7. p. 17) and up to 7 embryos are in a brood pouch in the newly recorded material from Sandy Bay (TM D711).

Larvae are relatively small with an almost spherical trunk 0.9 mm long. From the newly recorded colony TM D711. larvac from the one brood pouch have tails of varable length. Some, like those of S. pulchra reach halfway around the trunk. and others. like those figured by Caullery (1909. fig. 7), reach almost the whole way around the trunk. Neither epicardial tube nor rudimentary buds were detected.

Rrmarks Quoy and Gaimard (1834) described Aplidle pedunculara from Western Porl (Victoria) and King George Sound (Western Australia), Subsequent authors, including Herdman (1886), recognised it as a species of the genus Spoozoa ($>$ Colella), but mistook specimens of the Antarctic S. sigillinoides Lesson. 1830 for Quoy and Gaimard's species. Accordingly, for many years. S. pedunculata was treated as a junior symonym of S sigillinoides. The sype material of S. pedunculata, from King George Sound was redescribed by Caullery (1909), Although the shape of the colony could cause it to be mistaken for S. sigullinoides, larvae ol the lather species have a much longer tail.

The short tail (relative to the Jong one of S, sigillinoides) led Kott (1972d) to regard S. pedunculata as conspecific with S. remuicaulis (s S. pulchra). Sycozoa pedunculata is distinguished from S. pulchra by its more numerous male follicles, laek of root-like haurs on the base of the stalk and absence of the abdominal papilla. The
newly recorded specimens from Bass Strait and Tasmania appear the same spectes as redescribed by Caullery (1909) from King George Sound. Western Ausiralia.

Sycozoa pulchra (Herdman, 1886)

(Fig. 56. Plate $12 \mathrm{e}, \mathrm{d}$)
Goletlo pukhra Herdman 1886, p. 146: 1891, p. 611: 1898. 9.447

Syeotoa pulchrar: Sluiter 1909 p. 33. Nor Van Name 1918.p. 142 (? = Syrozua smanvadue),

Cofella tertuicaulis Herdman 1894, p. 64.
Sporeaa tenuicaulis: Brewin, 1953. r. 57. Kutt. 1957a p. 49: 19720, p. 8. Millar 1963, p. 707.

Sicozoa pedunculaia: Kott 19726, p. 170. 1472c, p. 214. 1476 p, 56, 1975. p. 2.
? Siedsua sigillinoides: Michaclsen. 1030, 15. 505 (pant specimens from Fremzale).
D20, Rimatios
Nrw Rlcumbs: Westert Austradia (Dongata, QM G9476, WAM 1001.83; Cockburn Sound WAM 9577 $226,73102.75228 .82$ 1002.83. QM (99633: Fapernnee WAM 68.75), South Austratia (Spencer Gull. SAM F2032 E20134-5 E2040-7; Si Vincent Gulf, QM GHzi6, SAM E2033: Kangaroo 1.. QM G9999). Victoria (Bass Strait, QM G12745 MV H449: Western Port, MV F5332 F F 53335) Tasmania (southeasterih Tasmania, TM D723 D1172: d'Entrecasteaux Channel. TM 1)251 D1803 D1858: Roches Beach. TM D1020: Okehampton Bay. IM DI8 15). Queensland (Moreton Bay, QM (14930 G5140 52: Townsville).

In Moreton Hay (7 Km . Rous (hwonel), Feeding irails of Dugong dugon cut thiough crowded popalations (abour 2,000 heads per m^{2}) of this specics (A . Preen pers comm.).

Provolst y Recormin: Western Nustralia (Millat 1963a;? Cockburn Sound Michaelsen 1930). South Austratia (Spencet (iulf - kour 1975; St Vincent Guiff

Kott 1972at; Investigator Strat Koll 1972b). Victoria (Portland, Port Phillip Bay, Western Port Bay Millar 19633. Kot 1976). New South Wales (Botany Bay, Braken Bay. Jervis Bay. Port Stephens. Port Jackson, Bermagai Herdman 1899, Brewin 1953, Kolt 1957a. Millat 1963a). Queensland (Moreton Bay - QM G4930) 1 G6148 9 Kott 1972c). North Australit (Torres Strait - Herdman IXX6) Indonesia (Sluiter 1909).

D) Sc-1R12. 10 N

Fembnal Amparanom: Zonds ate in about 8 pairs of double row systems extending parallel to one another down the sides of vertical, oval or inverfed cone-shaped heads, with the lerminal. free ends either flattened or rounded, but always without zooids. Deep, V-shaped cloacal apertures open around the side of the upper margin of the head. The stalk is narrow and never is less than 4 limes the length of the bead, often much longer. A small colony from South Australia, with a head about 1.5 cm long, has a stalk of 5 cm (SAM E2047), while one (rom Kangarno 1. (QM (99999)

Fig. 56, Sicozoa pulchra: a colony (SAM E2047): b.c. juvenile and male zooids (SAM E2047): d. larva (QM G9261): e. detail of laryal adhesive organ showing stalked vesicles from epidermis of the adhesive organ stalks (OM GY2t1). Scales: a, 1 cm ; b.c. 0.5 mm : d, 0.2 mm : e, 0.05 mm .
has a head 5 cm long with a stath of 28 cm and is the largest specimen known. A luft of rootlike hairs always is at the base of the stalk, and
sometimes eufts of hair oceur also at other points along its length. Often several stalked heads arise from a horicontal basal stolon with clumps of hairs
scattered along its length. One specimen (WAM 102.75) has a much-branched stalk, each hranch with a small, oval head, and the main stem from which the branches arise has a tuft of roots at its base. The stalk is hard with a hard outer cuticle, but the test of the head is soft. Heads are often found flattened in preservative, but this could be an artefact of preservation resulting from their softness.

Up to 50 functional zooids per row occur in the longer heads, although some of the smaller ones have less than half that number. At the base of the head small replicates, progressively becoming functional, are being added to the systems from the vegetative stolons in the stalk. Headless stalks are often collected (Spencer Gulf SAM E2035-6 collected in November; Moreton Bay QM G5178 collected in October).

Living colonies from Torres Strait were reported as red (Herdman 1886), as are photographed colonies in Cockburn Sound (QM G9633). Specimens from New South Wales were reported as 'yellow, grey, slate, dark purple-brown and dull pale purple' (Brewin 1953, p. 57), however it is not clear that these colours are found in living specimens, although specimens from Moreton Bay are blue. Photographed specimens from South Australia are white to yellow with a red tinge.

Interval. Structure: Zooids without mature gonads are only about 2 mm long when the abdomen, which is relatively small, is folded up horizontally behind the thorax as it so often is, even in the small vegetative zooids. The branchial aperture has a smooth margin. The atrial aperture is wide and asymmetrical. with a pronounced upper lip. Muscles are fine, and present only around the apertures. There are 16 stigmata in the anterior pair of rows and 14 in the posterior rows. The most conspicuous feature of all the examined material of this species is the wide knoblike papilla projecting from the body wall, just above the pyloric end of the stomach.

The oesophagus usually makes a right-angled bend before opening into the horizontally oriented stomach, which is wide anteriorly and tapers to its pyloric end before narrowing abruptly to the intestine. The intestine with the rectum forms a continuous cylindrical tube. Gonads are at the side of the gut loop, projecting from it. Thus, when the gut loop is horizontal, the mature gonads project behind it. However, gonads do not project behind the pole of the gut loop. The mature testis contains 4 to 6 long follicles, parallel to one another forming a barrel-shaped clump with its longitudinal axis at right angles to the longitudinal axis of the gut loop. The short vasa efferentia
joining the male follicles to the vas deferens are at the distal end of the follicles - the parietal end distant from the gut loop. The vas deferens makes the usual posterior loop before extending anteriorly, down the length of the testis to the rectum. The vas deferens and the rectum extend together to the atrial cavity. Mature ovaries have about 3 eggs.

In upper Spencer Gulf, heads have been observed to detach from the stalks in early summer, another head regenerating the next winter (Shepherd 1983). However, this timetable is not universal, for in other colonies from South Australia gonads are mature in November (SAM E2033) and January (SAM E2034 E2046-7); and embryos occur in the last two specimen lots. In the Tasmanian material embryos occur in July (TM D1815) and December (TM D1172), and maturing ova in October (TM D1803). In the western Australian material mature gonads occur in February (WAM 68.75) and November (WAM 1002.83). In Moreton Bay (Queensland), the gonads are mature in July (QM G5150-2) and September (QM G6148) and embryos occur in April (QM G4930) and July (QM G5151). Thus in South Australia sexual reproduction may occur throughout the summer - from November to February, the heads detaching from early summer to autumn. The existence of sexually mature colonies in April to September in Moreton Bay. suggests a different pattern in the tropics.

From 2 to 8 embryos occur in the brood pouches and half of these are either embryos at an early stage of development or unfertilised eggs.

Larvae are large, the trunk being 1.2 mm long. However, the tail is short. wound only a little more than halfway around the trunk. There is an otolith but no ocellus in the cerebral vesicle. The branchial sac is well developed, with 20 stigmata in the anterior rows and 18 in the posterior rows - 4 more in each row than in the adult zooids. The 3 smooth, elliptical stalks of the adhesive organs diverge from one another from the ventral part of the thorax of the oozooid. They contain a conspicuous internal extension of the larval haemocoelic cavity, a layer of ectoderm and a thick layer of test. Cilia-like extensions run through the test from the ectodermal cells. These have small terminal expansions at the outer surfacc of the test. The axial cone of adhesive cells surrounded by its ectodermal cup and topped with a large hyaline cap is at the end of each stalk. A long extension from the posterior end of the left side of the abdomen - the left epicardial sac - extends forward to lie amongst the stalks of the adhesive organs. 1t is narrow proximally and expands
toward the anterior (distal end), There are 3 rudimentary huds lying in the laryal test around the base of this suc, which, presumably, continues its development after the buds separate from it,

REMARRS The range of this species appears continuous from Western Australia across the temperate southern coast to Moreton Bay and Townsville. Consequently there is no geographic reason why S. tenuicuulis and S. pulchra (from Torres Strait) should be considered distinct. The basal stolon (uniting stalked heads) which Herdman (1899) believed characteristic of S. lenkicaulis occurs in temperate as well as iropical populations. Further, the abdominal papilla from the body wall over the pyloric end of the stomach. which Herdman (1886) tirst reported for S. pulchra, is present in all the examined specimens. It appears a reliable taxonomic characler supporting the synonymy of S. pulctra and S. renuicaulis.

A similar papilla is present in S . kanzasi (Oka, 1930) From Sagami Bay, This species, although apparently related, is separated from S. pulchra by the presence of a single terminal cioacal aperture (Tokioka 1953). The size differences referred to by Tokioka (1953) and Millar (1975) are not significant, but attributable to zooids and colony of the type specimen of S. pulchra coming from the lower end of the sange for the species.

Tokioka (1953) believed the papilla in S. kanzasi an incipient bud. However there is no indication of budding. In the examined specimens of S. pulchra the structure scems a thickening of the ectoderm that is inserted into the test. It may be this deviee that keeps the gut loop horizontal in this species and in S. kanzast.

Kout (1972c) suggested that S. xigillinoides: Michaelsen 1930 from Cockburn Sound is a synonym of S. pulchra ($>$ S. pedurtulata: Kout 1972c). This is prohable. Sycozoa pulchra, but not S. pedunculata, is common in Cookburn Sound (sce New Records, above).

The single specimen Sycozoa puldira: Van Name 1918 from the Philippines has a thicker stalk than is usual for this species, and lacks the papilla on the abdomen. It may not be correctly assigned to S. pulchra and probably is a juvenile specimen of S. seiziwadai,

The featutes which logether characterise the present species are its knob-like papilla on the abdomen, root-like hairs at the base of the stalk, loog, leatiery, narrow stalk, small oval to inverted conical head with the cloacal apertures around the outer margin of the top of the head, relatively few male follicles, horizontally oriented abdomen. short-tailed larva, unusual cilia-like extensions from the ectodermal cells of the stalks of the
adhesive organs, and long, conspicuous epicardial sac in the lacyal trunk. Herdman (1899) recorded 8 lobes in the testis of the type material of S. tenuicaulis. No more than 6 and aften only 4 male follicles have been detected in the course of the present study. Further Herdman reported the position of the gonads as behind the gut loop. This is not absolutely accurate - gonads are always at the side of the gut loop and are posterior to it only when the abdomen is bent at right angles to the thorax, placing the gut Joop horizontally.

The closest known relative of the present species is S. brevicauda n. sp. which also has root-like hatirs at the base of a narrow stalk, a conspictous epicardial sac in the larva and similar extensions. from the ectodermal cells of the stalks of the adthesive organs. However in S. brevicaula the head is flattened and fan-shaped, there are more numerous mate follicles, no papilla on the abdomen, the larval trunk is hall the length of that of S. pulchra, and its tail is shorter than that of the present species.

Sycozoa seiziwadai Tokioka, 1952

(Fig. 57a,b)
Sivcozoa seiziwadai Tokioka, 1952, p. 99 . Millar, 1963s, p. $708: 1975$, p. 223

Sycazon cerebriformis: Hartmeyer. 1919, 1. intermedia P. 121 .

Sycozoa pedunculara: Koul. 1972.1, i) 243.
2 Sicozoa pulchra: Van Name. 1918, p. 142.
"Syeozoq" sigillinoides: Monniot, 1988, \&- 199.
Dtstribution
Nrw Rrcoras Western Australia (Port Hedland, WAM 189.87: Damprer Arehipelags, WAM 1050.83: Cape Preston WAM 802.83). Queensland (Swain Recls, AM Y2144), Northem Jerriory (Darwin, QM GH42 is, WAM 108.75)

Praviousha Rerobdod: Western Aastralia (Broome. Holothurian Banks, Bassett Smith Reef - Millar 1963a; Cape Jabert - Hartmeyer 1919), New South Wales (Cronalla Kotl 1972d). Arafura Sea (Tokiuka 1952). Philippines (Millar 1975, ? Van Name, 1918).

The record of its occurrence at Cromulta, NSW, is anomalous for this species in view of its otherwise exclusively tropical range, It is recorded subtidally to 40 mz .

Description

Extrimal. Arprarance Colonies consist of thick (up to 1 cm diameter) branching stalks, the relatively short terminal branches each expanding into a short drum- to fan-shaped pooid-bearing head, circular to oval or elliptical in section, and absolutely flat on the upper surface. The whole colony is firm and gelatinous. The upper surface of the zooid-bearing heads is often indeuted where the cloazal apertures open around the margin.

Adjacent heads sometimes fuse with one another near the upper surface where they touch,

Zooids are arranged in parallel vertical rows, one each side of a cloacal canal, with from 10 to 15 functional zooids per row and up to 16 double rows per head.

The collector has noted that the newly recorded specimen from Darwin (QM GH4218) was orange with yellow spots and some black in the colony. Faint traces of the yellow spots are present in the surface test of the preserved colony.

Internal. Structure: Zooids are about 3 mm long with the thorax and abdomen of about equal length. The branchial aperture has a few, minute, pointed papillae around its border and a thin band of circular muscles. There are also the usual fine muscle bands around the atrial aperture. The large atrial aperture has the usual asymmetry. The branchial sac has 14 stigmata in the anterior pair of rows and 12 in the posterior pair. The stomach, which is slightly smaller than usual in this genus, is more or less vertical, as is the whole gut loop. The stomach is wide at its anterior end and tapers gently toward the pyloric end where it abruptly narrows. The intestine and rectum together form a cylindrical tube of even diameter. The gut loop is relatively long and narrow. A gastric reservoir was not detected.

Gonads are enclosed in the gut loop toward its posterior end where they protrude slightly from the right side. All the mature heads of the available colonies are male. One from Western Australia (WAM 1005.83) was collected in October and one from the Northern Territory (QM GH4218) in August. The testis consists of 6 long follicles forming a barrel-shaped clump, with the short vasa efferentia from each follicle joining the vas deferens at the distal end. The vas deferens makes a posterior loop before extending anteriorly along the rectum to the atrial cavity.

One embryo per brood pouch occurs in specimens from north-western Australia (Millar 1963a). In these larvae the trunk is relatively short $(0.6 \mathrm{~mm})$ and the tail is wound almost completely around it. Stalks of adhesive organs are wide with a large cone of adhesive cells, which, in its epidermal cup, is depressed into the end of the stalk. Three rudimentary buds are in the larval test.

Remarks: The colonies of this species have similar fleshy stalks to those of S. cerebriformis. However, they are longer than in S. cerebriformis and are always branched. The zooid bearing part although often flat is not ribbon-like and pleated as in S. cerebriformis, although the tendency for the heads to fuse also occurs in S. cerebriformis
(see Herdman 1899). Other differences are discussed above (see S. cerebriformis). Larvae of the present species are significantly smaller and have a longer tail than those of other temperate or tropical species.

Sycozoa cerebriformis: Hartmeyer, 1919 (f. intermedia) has the characteristically branched stalks of the present species, and the same flattened heads that fuse with one another.

Sycozoa pulchra: Van Name, 1918 from the Philippines has the same shaped head and fleshy stalk of the present species and is very likely a juvenile colony of this species.

Sycozoa? sigillinoides: Monniot 1988 from New Caledonia is unlikely to be a specimen of the Antarctic species to which it has been assigned. Since its larva is the same as S. seiziwadae, it may be conspecific.

Hartmeyer (1919), Michaelsen (1923) and Millar (1963a) compared characters of S. cerebriformis and S. seiziwadai with the South African S. arborescens Hartmeyer, 1912. The South African species has a terminal cloacal cavity with a central aperture, as in S. sigillinoides, thus it must be distinguished from S. seiziwadai and S. cerebriformis. The branching stalk, each branch with a separate head, occurs in both S. arborescens and in the present species.

The present species has a tropical, western Pacific range, not apparently extending into temperate waters - Cronulla, off the New South Wales coast being the most southerly record to date.

Sycozoa sigillinoides Lesson, 1830
(Fig. 57c,d. Plate 12e)
Sycozoa sigillinoides Lesson, 1830, p. 436. Hartmeyer, 1911, p. 534. Michaelsen 1924, p. 288. Salfi, 1925a, p. 2. Van Name, 1945, p. 151. Ärnbäck, 1950, p. 29. Brewin 1952b, p. 190; 1953, p. 56. Kott, 1954, p. 155; 1957a, p. 99: 1969, p. 26; 1971, p. 18. Millar, 1960, p. 71; 1982, p. 12. Not Michaelsen, 1930, p. 505 (? < Sycozoa pulchra, S. pedunculata).
Colella sigillinoides: Michaelsen, 1907, p. 43.
Sycozoa aff. sigillinoides: Hartmeyer, 1911, p. 489.
Sycozoa (Colella) sigillinoides: Hartmeyer, 1912, p. 313.
Aplidium pedunculatum: Cunningham, 1871. p. 490.
Colella pedunculata: Herdman, 1886, p. 74. Pfeffer, 1889, p. 4(40); 1890, p. 499. Sluiter, 1900, p. 5; 1906, p. 6. Not Caullery, 1909, pp. 30, 39 (< Sycozoa pedunculata).
Colella quoyi: Harant and Vernières, 1938, p. 6.
Sycozoa quori: Kott 1954, p. 157: 1957c, p. 1.
Colella ramulosa Herdman, 1886, p. 120. Michaelser, 1907, p. 53.
Colella umbellana Michaelsen, 1898, p. 371; 1907, p. 54 f. typica, p. 59 f, kophameli. Caullery, 1909, p. 53. Sycozoa (Colella) umbellara: Sluiter, 1919. p. 12.

Fig 57, Sycozoa seiziwadai (QM GH4218: a, colony, b, nale zooid. Sycozoa sigillinoides (QM G10148): c, rooid: d. larva. Scales: a. $5 \mathrm{~mm} ;$ b,c, $0.5 \mathrm{~mm} ; \mathbf{d}, 0.1 \mathrm{~mm}$.

Colella perrieri Caullery, 1909, p. 33.
Sycozoa perrieri: Hartmeyer, 1909-11, p. 1439.

Distribution

New Recoros: South Australia (southern part of Spencer Gulf, QM GH4171). Tasmania (St. Helens, QM G10148; Montague I., AM G13077).

Prfviousi.y Recorded; Antarctic and Sub-antarctic (circumpolar, and north to Magellanic area, Falkland Is. Kerguelen, Heard and Macquarie Is., Chatham I., - see Kott 1969). New Zealand (Michaelsen 1924, Brewin 1952b).

Specimens from Cockburn Sound, Western Australia, assigned to this species by Michaelsen (1930) are probably of Sycozoa pulchra as this is the only species now known to occur there. The records from Albany and King George Sound (Western Australia) may be either S. pulchra or S. pedunculata (type locality).

Records of this species from the tropical Atlantic (Michaelsen 1907) and the tropical Pacific (Michaelsen 1924) Oceans are of isolated heads in the plankton. The tendency for the heads to separate from the stalks and float in the plankton may contribute to the wide geographic range of the species.

The northern limit of the recorded range of this Antarctic species is off South Australia. However, records from Australian waters are rare, and so far the only other Australian localities from which the species has been taken are off Tasmania.

Description

External Appearance: Colonies consist of more or less oval heads (up to 2.5 cm long and 1 cm in diameter) on long, thin and hard stalks. Stalks taper toward the base where they spread slightly to form leathery holdfasts. Zooids are in parallel double-row systems down the side of the head. The cloacal canals open around the central test core at the top of the head and the outer test is sometimes folded in to cover them, of ten leaving the central core slightly protruding. In some colonies (QM GH4171), however, the test corc at the top of the head is disintegrating, depressed and porous, leaving the zooids embedded in longitudinal ridges of the outer layer of test that project into a central cavity to which the cloacal canals and the atrial apertures of the zooids are exposed (as in S. cavernosa n. sp.).

Many of the colonies have branching stalks, with a separate head at the end of each branch. Millar (1960) believed these multiple colonies to have developed following regeneration from persisting stalks.

Living colonies from Tasmania (QM G10148) were orange, In preservative they are cream and one specimen (AM G13077) has orange pigment spots in the surface test.

Internal Structure Zooids are relatively large (4 to 5 mm long). The branchial aperture has 3 or 4 frills around its ventral side that may appear
to be lobes, but actually result from contraction of the branchial sphincter muscle. The whole dorsal border of the aperture is often produced into a large, delicate lobe, into which the muscles of the sphincter spread. The atrial muscles extend out in a similar wide arc in the large, rounded border of the wide atrial aperture. The atrial opening is asymmetrical exposing most of the branchial sac on one side of the body. No muscles are on the thorax except the fine ones around the apertures.

There are from 16 to 26 stigmata per row, the number increasing with the size of the zooids. Small vegetative zooids at the top of the stalk have 16 stigmata in the anterior rows. In one of the newly recorded specimens (QM G10148). which has the maximum number of stigmata, and appears an old colony, the pairing of the rows of stigmata, even in the small vegetative zooids, is not as conspicuous as it usually is, the third and fourth rows being more conspicuously separated ventrally than the second and third rows.

The gut loop is usually vertical: The large brownish stomach is about halfway down the abdomen. It does not reduce in diameter much toward its pyloric end, but it narrows abruptly before opening into the intestine. The intestinal loop is relatively short and the intestine and rectum form a continuous cylindrical tube. Millar (1960) observed a mid-intestinal enlargement but this is not apparent in the present material.

Gonads are at the side of the gut loop, and when mature project from it. Although they are in a sac, it does not have a constriction separating it from the abdomen. Mature gonads are present in both newly recorded specimen lots, collected in April (from South Australia) and October (from Tasmania). Ovaries contain about 10 eggs and 12 to 18 wedge-shaped male-follicles crowd into an almost spherical clump with the vas deferens originating at the outer end of the clump and making the usual posterior loop before extending anteriorly on the rectum. Colonies are dioecious. From 6 to 16 embryos and eggs are in a long brood pouch curved at the end. Embryos are lined up with their longitudinal axis across the brood pouch instead of being end to end with their longitudinal axis parallel to its length.

Larval trunks are from 0.4 to 0.76 mm (see Kott 1969) and the tails are wound one and a half times around the trunk. They have large cones of adhesive cells rising from the base of the ectodermal cups in the 3 triradially arranged adhesive organs. These are depressed into the tip of the wide stalks (of the adhesive organs) which form an inflated annular base to each cone of
adhesive cells. There is an otolith but no ocellus in the cerebral vesicle.

Remarks: The characters that separate this species from all others in the genus are its larger zooid with more stigmata, larger gonads with more wedge-shaped male lobes and eggs, and more embryos in the brood pouch. The cloacal opening. which comprises a significant distinction from most other species, is difficult to interpret, especially when the terminal part ol the head is disintegrating. However, when this happens, the openings of the cloacal canals appeardrawn down inside the head. and the atrial openings are exposed to the inner chamber rather than directly to the exterior as they are in most other species of the genus, except in S. cavernosa n. sp. In the latter species the cloacal cavity in the centre of the head indicates a relationship to S. sigillinoides.

Sycozoa pulchre and S. pedunculata superficially resemble the present species, but are distinguished by their separate cloacal apcrtures and their short-tailed larvae. The larva of S. sigillinoides, like that of S. murrayi has relatively large cones of adhesive cells and a long tail.

Family STOMOZOLDAE new family

The family is erected to accommodate a single genus Stomozoa Kott, 1957b, formcrly regarded as a member of the Clavelinidae. The genus has 6 fringed lobes around each aperture. Pigment spots (possibly ocelli) are present at each side of the base of each of these lobes. A wcll developed siphonal velum in each siphon projects outwards to form a conical structure with a terminal aperture. There are numerous stigmata and wide transverse vessels, but no internal longitudinal vessels. Long vascular stolons, occasionally branching and terminating blindly in the firm test, lack both a mesodermal septum and terminal ampullae. Longitudinal muscles extend from the apertures and converge into a strong longitudinal band along each side of the ventral mid-line of thorax and abdomen. Relatively small gonads are in the gut loop, the testis with pear- to club-shaped lollicles, and the ovary containing only one or at most 2 eggs.

The gonads of this genus often are difficult to see. Those of the 2 new Australian species and the 2 previously described are similar (Millar 1955, Kott 1957b). Millar (1977) reports 'spent gonads' in the Brazilian material of S. roseola. However. his figure suggests the small group of male follicles reported may be part of the mass of tangled tubules of the pyloric gland present in the same position in the newly recorded Australian material. The
ovary of S. murrayi: Monniot, 1988 has more eggs than the onc or 2 usually found. Only a single large embryo has ever been found in the atrial cavity of a Stomozoa sp. Larvae of Stomozoidae have triradially arranged adhesive organs, 2 dorsal and one ventral, each with a wide and shallow axial cone in an epidermal cup. The test is firm and gelatinous throughout.

Kott (1957b) assigned the genus Stomozoa to Clavclinidae, believing the smooth border of the muscular velum homologous with the smoothrimmed apertures of that family. However, the pigment spots at the base of the lobes around the outside of the apertures suggests these fringed lobes are more likely homologues of the lobed apertures of Diazonidae. Clavelinidae are further distinguished by their soft and flaccid thoracic test, larger ovaries, more numerous embryos incubating in the atrial cavity, and longitudinal thoracic muscles that extend postero-dorsally (rather than postero-ventrally as they do in the present family). Although they lack the clavelinid frontal plate the larvae are generally more like Clavelina larvae than those of Distaplia (see also Millar 1977).

The present family does not appear closcly related to the Holozoidac. The vascular stolon lacks an epicardial septum and any sign of vegetative zooids developing from the narrow vascular stolon as in Holozoidae. Thus it is possible replication could be by transverse division of the zooids as in Diazonidae and Polycitoridae.

Stomozoidae are separated lrom Diazonidae by the absence of internal longitudinal branchial vesscls, large viviparous larvae, and firm lest over the upper thoracic part of the colony.

Their closest relatives may be Polycitoridae, as sooids of both have broad ventral muscle bands in the abdomen and a long oesophagus. Stomozoidac are separated from the latter family by the long vascular stolon and larvae with triradially arranged adhesive organs.

Kott (1981) in discussing the relations of Euherdmania digitata, and E. dentatosisphonis, the latter species with fringed lobes around the apcrtures similar to those of the present lamily, thought both may be synonymous with Stomozoa roseola(Millar, 1955). However, Millar (1977) had already considered these relationships, and concluded that the prescnce of gonads in a posterior abdomen and incubating embryos in the abdomen characteristed Euherdmania as distinct from Stomozoa. Other features distinguish these two genera. In particular, Euherdmania has tubular larval adhesive organs, a folded stomach, separate zooids and lacks a vascular stolon. Further, although ocelli are in the centrc of the
lobes asound the apertures of Euherdmanta they are not at cach side as they are in Stomozola. Thus, it appears Euherdmama and Stumozoa are not closely retated and the lringed lobes around the apertures of some Euherdmanio species may not be homalogous with the simitar ones in Siomuzon.

The small ovary and lew large embryos produced in the known species of the present family suggests it has a Jongevolutionary history as a colonial organism. Available evidence offers no alternative to the hypothesis of early isolation from a diazonid ancestor, possibly in common whth Polycitordiac, the latter lamily diverging from Stomozoidae with loss of the ocelli around the apertures. reduction in sice of anoids and larvae, and acquistion ol median (rather than thiradial) arrangement of Jarval adhesive organs.

Genis Stomoroa Kott. 1957

1 3pt specks: shomozou murrayi Kolt, 1957h (e. Clavelima roseola Millar, 1955).
Since Stomoroidae is monotypic. the generic chanacters anc also those of the family.
there ale 3 species. The lype species is known from a remarkably wide, albeit tropical geographic range. via. The Braxilian and Guyana Shelves (\because Diamma gigamea; Monaiot. C. 1970; S. murrayi: Millar 1977, 1978), South Africa (Clarelina roseda Millar. 1955: 5. murravt Millar 1462), New (alcdonia(s, murayi: Monniof, 198S) and the Red Sca (S. murrayi Kott. 1957b). No apparent morphologeal dillerences in specimens from these locations exist to indicate speciation in either adutt colonies on rooids. Latvac are known only from Brazilian pupulatsons. Only a single larva is produced at a time by each zooid. Accordingly, the strategies for gene flow are not upparent. Both Austratian species deseribed below appear indigenous, one a temperate species recorded on a number of occasions from the Great Australian Bight, the other (from the tropies) recorded once lrom Heron 1. and 4 times from the north-western coast. Both species have fewer stigmata in the adult ponid thath is. resseoke, but otherwise are similar to if. Larvas. known lrom both, are only balf the size of the larvae of S. rexicorlo.

Stomocua australimbis m,sp.

(Fig. 58. Platce 121)

1 Dathon This

 Rustralian Bigh1. Son. coll. S.Shepherd 29.3.82. holotype QM Gll974; Ward I. Great rlustration Right, chllm and
sats. 6m, coll. S.Shepherd, 12.4.83, palatypes. GM C.11946 G112.392)
 ian Bught. OM GH1300h.

Drecripticin

Exheral Aurbarane: Colonics are up lo 3 cm high, and consist of mumerous translucent. alnost apherical heads up 101.5 cm in diameter, with shghtly marrower, opaque stalks joined to one another basally. The internal test is firm and translucent lhroughout. Some patehes ol orange pigment cells are around the zooids, and minute (0.02 mm) morula bodies are evenly scattered through the test about 0.05 mm upart. These are not calcareous. In expanded colonies the large. fringed lobes around the apcitures of the sotheds protrude from the upper surlise, and sarnetimes the whole anterior portion of each zooid projects. When rooids ate withdrawn the upper surface of the colonics is llat. Living colonies are descrited us bright pink, although photographs do not confirm that deseription. some variation is likelo, Colonics are white in preservative. Epibionts grow amonges the stalks - in one cofony a botryllid adtreares elonely to the test of the stath.

Intirnnal Siricture: Zooids, tighty enclosed in the firm test, are difficult in temove. When contracted they are about 1 cm long. The to characteristic lobes around each aperlure are subdivided into 5 or 6 . cach subdivision with a terminal narrow point Corange ocelli are at enth side of the base of each of the lobes. "Tlie fringed lohes fit into eorresponding lobes ol the test, "the median dorsal lobe of the branchial aperture and the ventral lohe of the atrial apetture are larger than the others. On the thorax sbout 4 longitudinal musele bands from the branchial operture and about δ attogether from the intersiphonal spact and atrial uperture extend toward the ventral border of the zooid where they join into the 2 characteristic wide ventral handsextending the lull length of the zooids - one on each side of the ventral madine. The ventral bands cxecend almest to the posterior end of the abdomen where they terminate abruphly wround the posterior vascular stolon where it emerges from the ventral side al the abdomen. In most specimens the strong contraction ol the ventral musele bunds has drasu the proximal end of the vaseular stolon away lirmom the 1 of of the abdonten to just opposite the stomach. Anterionly, the muscles extend into the musculan velum around each aperture. The fringed labes themselves do mol contain conspicusus muscles. About 90 fine branchial tentacles arte behind the hawe of the branchisal velum. Thutsed of these specimers are so contracted that 11 was

F16, 58, Stomazoa oustraliensis n.sp.: a, general shape of colony (paratype QM GH946); b, single lobe of a colony with zooid openinge distended (holotype QM (GH974); c. branchial lobes surrounding muscular aperture through which the tentacles are protruding (holotype QM GH974): d. mooid from dorsal surface (paratype QM GH2392); e, abdomen showing branches of pyloric gland, ovary surrounded by minute male follictes, and the heart (paratype QM Gll946); I, larva (paratype QM GH94(). Scales: $\quad \mathrm{B}, \mathrm{b}, 2 \mathrm{~mm} ; \mathrm{c}, \mathrm{f}, 0.2 \mathrm{~mm}$; d,e, 0.5 mm .
not possible to determine whether the tentacles were in one or more than one circle. The opening of the neural gland is circular.

Twelve to 14 rows of long, narrow stigmata, with about 30 per row, are separated from one another by wide transverse membranes. Dorsal languets are wide and dorso-ventrally flattened where the transverse vessels cross the dorsal sinus.

The oesophagus is long, but often is wrinkled owing to contraction of the body muscles. The stomach, in the posterior end of the abdomen, has 6 fine ridges interrupting the glandular lining. An oval posterior stomach is in the descending limb of the gut loop, separated from the stomach by a narrow mid-intestine, usually also obscured by contraction. The anus opens at the base of the atrial cavity. The pyloric gland from the distal end of the stomach divides into numerous branched tubules that encircle the ascending limb of the gut from opposite the stomach to about halfway up the abdomen. A one-egg ovary with apparently a large polar body is on the right sidc of the gut loop. The testis, beneath the ovary, consists of pear- to club-shaped follicles. Finebranching vasa efferentia converge to the base of the vas deferens. There is often a mass of minute cells and granular material (that may be associated with the vegetative process) in the loop of the gut and around the outside of the posterior end of the intestine. This material obscures the gonads and the pyloric gland.

In one specimen lot (QM GH946) a single large embryo is in the atrial cavity. The larval trunk is almost spherical, 1 mm in diameter. Three rounded ampullae project between the triradially arranged adhesive organs. Each adhesive organ has a wide axial protrusion in an epidermal cup. The tail is wound slightly more than halfway around the trunk. The larval test like that of the adult colony is tough, white and almost opaque.

Remarks: The species is distinguished from Stomozoa roseola (Millar, 1955) by its small number of rows of stigmata, S. roseola from the Brazilian Shelf having 26 to 32 rows with up to 60 in a row (Kott 1957b, Millar 1977), and specimens from the Guyana Shelf having 19 or 20 rows (Millar 1978); and by the size of the larvae, that of S. roseola (2 mm trunk diameter) being about twice the size of the present species. The adhesive organs of the present species are the same as those of S. roseola. The rounded swelling Millar (1977) observed on the top of the central knob of cells in the adhesive organs may be a hyaline cap as in Distaplia larvae (see Cloney 1977). It is not present in the larvae of S. australiensis from South Australia. Otherwisc the species are
remarkably similar - the colonies, muscle bands. gut and lobes of the apertures all being identical. Spicules in both Red Sea and Brazilian specimens of S. roseola are not present in S. australiensis. Differences between the 2 Australian species are discussed below.

Stomozoa bellissima n.sp.
(Fig. 59. Plate 12g)
? Polycitor aurantiacus: Hartmeyer 1919, p. 108.
Not Atopogaster aurantiaca Herdman, 1886.
Distribution
Typf Locality Western Australia (Bundegi Reef. Exmouth, coll. N. Coleman 14.8.72, AMPI 74, holotype QM G9267). Queensland (Heron 1., NE Point 3m. coll. D. Parry 1.11.85, paratype QM GH4918).

Furthrr Rfcords: ? Western Australia (Cape Jaubert - Hartmeyer 1919).

Description

External Appearance: The holotype has at dome shaped head of about 3 cm diameter set on a thick stalk of only slightly less diameter. The stalk scparates into 4 branches, 2 of which fuse with one another basally to form a thick loop. The head and stalk each occupy about half of the total height (4 cm) of the colony. The test is firm but gelatinous throughout, that on the head being translucent, while the outer surface of the stalk is opaque and brownish. The paratype colony is smaller (containing only 8 zooids) with test projecting from the upper surface over the anterior ends of the zooids. As in the holotype, the test becomes firmer toward the base where the diameter of the colony is reduced to form a relatively narrow stalk. Zooids are rather sparsely distributed. They open all around the head and converge in toward the centre and base of the colony. In both specimens they are contracted and withdrawn from the surface. The internal test is firm and contains the long vascular appendages of the zooids irregularly criss-crossing one another.

The test around the apertures is produced into hollow, fringed lobes, which accommodate the lobes of the body wall around the apertures of the zooids. The living specimens have a clear test with poppy red zooids (QM GH4918) or the colony is a pink colour throughout (QM G9267).

Internal. Structure: The contracted zooids are robust and about 1 cm long, although in their extended condition they may be up to twice this. The body wall is muscular and siphons and thoraces are contracted in both newly recorded specimens. The branchial aperture is terminal, and the atrial aperture is up to two-thirds of the body length distant from it. The branchial apertures

Fig. 59, Stomozoa bellissima n.sp : a , 7.ooid (holotype QM G9267); b, colony (holotype QM G9267); c,d, lobes of branchial aperture (holotype QM G9267), e, colony (paratype QM GH4918); f, pooid (paratype QM GH4918); g, larva (paratype QM GH4918). Scales: a,f, $1 \mathrm{~mm} ; \mathbf{b}, \mathrm{e}, 5 \mathrm{~mm} ; \mathbf{c}, \mathbf{d}, 0.2 \mathrm{~mm}, \mathbf{g}, 0.5 \mathrm{~mm}$.
upen below the atrial apertures on the surlaee of the ealony, and the dorsal surface of each zooid is. just bencuth the surface test.

Thee border al each aperture is deeply divided imto 6 flaps or lobes, each subdivided along its straight or rounded outer edge into a fringe of a variable number of rounded or pointed projections - about 4 on the atrial lobes and up to 8 on the branchial lobes.

Bouls apertures of the zooids in the holotype Colony are transverse. The branchial opening has ins 3 largest lobes on the dorsal rim, and in living specimens these probably direct the opening downwards toward the substrate. Four larger lubes are on the posterior rim oll the atrial siphon whieh in some of these eontracted zooids lolds up anteriorly against the zooid. eovering the 2 labes on the anterior rim. Each of the propections (1tn the outer fringe ol each lobe has a sntall uramex pigment spot in the centre. Also a eomspicinus spherical patch of pigment (possibly an acellus). yellow in preserved speeimens, is an each sude (1) the base of the primary lobes. The latter pigment spots oceur in pairs. cach Iocated close to its partner on the adjacent lobe. Those on the 3 Jarge cursal lobes of the branchial aperture and 4 posterior lobes of the atrial aperture are larger than the others, The muscular velum characteristic al this genus is inside each aperture.

A strong band of circtiar museles shrrounds ceacll aperlare, loungitudistal maxde band radiate from cach siphon. hut the most numerome muscle hands (ast least 15) are those bloal bexend ateross the dorsal surface berween siphoms All longetidmal muscles converge tewatd the ventral surlace to lorm 2 wide bands extending the whole length of the hody, one un each side of the mitd-ventral lone. Some intersiphonal muscles extend across the dorsal surfuce just behind the hranehial siphon and in front of the atrial siphon. On the ventral side of the branehial siphon. Iongutudimal bands can be seen radiating away from irs base

About 40 crowded branclual tentates are of valous sizes. but all relmively lone and stender 1he triangular dersal languctson the dorsal simus have long poines. The thorax is whet. whth 14 or 15 rown ol about 40 stigmata and wide transicese vesurls hetween the pows.

The oesophagus is long, opening into the rather narrow stomath athout two thirds ol the distance down the abdomen. The stomach has a sularelone, hor ahtough it may be collapaed and appear lolded thece are no structural grooves or folds irn is wall. A wide duodenial areas a narrow, carved mid-intestine and a longish otal posterior stomach
are also in the acscending limb of the get loop. and the reetum occupies the whole ol the ascending limb. A cireulas mass of long, almost club-shaped male follicles converge into the centre in join the yas delerens un the right side of the gut loop. A small sac-like ovary with one or 2 ova is outsede the male follicles.

A long, line, vascular appendage, with a lew muscle fibres extending allong it. projects from the left side of the pole of the gut loop. These vessels have 2 channels, but nomesodermal septum. I toy resernhle the test vessels of Phlebohranchia. They do not tiun parallel to one athother. but criss-cross in the internal test of the colony.

The specimen from Heron L eolleeted 10 November has a single tarva in the atrial canty, Its trunk is oval. Imen longe and the tail is mound ahout hallwaty around the trunk. The trimadially arsanged adhesive organs are the whal sessile shallow depressions with stn axial cone. Shore ectadermal ampallace alternate with the adheste organs.

Romakks. The species differs from the othes Australata spueces of the gethes (S. atastralionsis n.sp.) in its posteriorly positioned atrial aperture the more numerous museles hetween the siphons. the stmond rather than ridecel internal linitge of the stomach and oval sather than spherical larsal 1rusik.

The colony ol the present species is not broken up into separate Johes ass that of S. ausuraliensis. although this coltd be to virriable character. The spectes des have about the same number of long. fine branchial tentacles and rows of seigmata and both have long tentis follicles, the same arrangement of their museles, and the same smath, satlike ovary.

Hattmever's specimens from north-western
 auremtasa (Herdman, 18s2) lrom Bass Siran Itwe Hass stuat spectes has a short uesophagus and it posterior shdomen, and belongs to Polyclinidae. Halmeyer's specimens had numerous long. fine branchisl tentacles, Jone rooids of ahout 1.4 cm , 15 rowis ol sigmata and reddishviolet coloured cushion to stalked colony, about 5 cm in maximum dimenston with the stalk divided basally as in the present colony. Although Hartaneyer secords the siphonal lobes deeply separated from one another, he does not descrite eilluen af frimee on their outer border. or ocelli at their bass Nevertheless, his specimens were combated. the apertures probably were obsetred and it is not impossible that the specimens are of the present species.
family POLYCITORIDAE Michaelsen, 1904
Colonial, with rooids usually entircly embedded in common test. Zooids are divided into thorax and a long abdomen (containing gut and gonads), and reach almost to the base of the colony. Usually only a short, often branched, vascular appendage is at the posterior end of the abdomen. Both branchial and atrial apertures are 6 -lobed. on conspicuous siphons and open separately to the exterior.
Thoracic musculature usually consists ol 'st rong external longitudinal bands and an inner layer of transverse muscles. The former continue in two strong bands along the abdomen, one cach side of the ventral mid-line. These do not extend on to the posterior abdominal vascular appendix. The usual circular muscles surround each siphon and sometimes (in Eudistoma) these form strong conspicuous sphincters. Zooids are particularly contractile. They are often (but not always) arranged in circular systems with the atrial openings in a tight group in the centre of the circle, sometimes in a depression homologous with a rudimentary cloacal cavity. When contracted, tooids appear to dctach from the surface test and are withdrawn toward the base of the colony.

Replication is by horizontal strobilation of the ahdomen, as in the Diazonidae. Fertilisation apparently is usually in the atrial cavity, and eggs and embryos at different stages of development can be found therc. However. in Cystodytes and Polycitorella and occasionally in Polvcitor and Eudistoma (Polycitor circes, P. annulus n.sp., Eudistoma incuhitum n.sp.) fertilisation is at the base of the oviduct, development procceds as emhryos move up the oviduct, and is completed in the atrial cavity or, in some cases. in a brood pouch at the top of the oesophageal neck (see also the Arctic Polvcitor vitreus: Berrill, 1948a, Eudistoma clarum: Van Namc, 1945 and E. olivaceum: Berrill, 1947b). The 3 larval adhcsive organs are in a median vertical line at the anterior end of the larval trunk, except in Polycitor circes and P. annulus $11.5 p$. (which have them triradially arranged). The adhesive organs are stalked, with a lat-topped cylindrical protrusion of columnar cells in the centre of a cup of specialised epidermal cells, except in Cystodytes (in which the protrusion is conical) and in Brevicollus n.gen. (which has no axial protrusion). The larval cetoderm is also produced into undivided or bilobcd, conical, flattened or cylindrical ampullae in the mid-line (alternating with the adhesive organs), and or in one to 3 lateral rows along each side of the adhcsive organs. Fine extensions from ectodermal cells
expand into terminal vesicles in the larval tcst in some spccies (see Annotated Glossary: larvae). In larvae of this family there are usually 2 rows of stigmata but occasionally 3 (sce E. maculosum n.sp., E. muscosum n.sp., E. purpureum n.sp.). The larval tail is especially wide and flat, the trunk contains a large yolk mass, and the larvae give the appearance of being long-lived and strongly swimming.

Polycitorid and holozoid genera were formerly included with clavelinid genera in the Distomidae Giard. 1872 which became a junior synonym of the Polycitoridae Michaelsen, 1904 (after the type genus - Polycitor Renier, 1804). Subsequently polycitorid and holozoinid genera were containcd in the Polycitorinae of the Clavelinidae (Michaelsen 1930, Huus 1937) until Berrill (1950) separated the holozoids as Holozoinae. In addition to Distaplia and Sycozoa, Michaelsen (1930) bclieved the Polycitorinae included Sigillina (with subgenera Archidistonta Garstang, 1891: Eudistoma Caullery, 1909; Paessleria Michaelsen. 1907; Mrperiodistoma Michaclscn. 1930; Sigillina. Savigny. 1816), Polycitor Renier, 1804, Cystodytes Drasche, 1883 and Tetrazona Michaelscn. 1930. Of the suhgenera of Sigillina (which Michaelsen characterised by the presence of 3 rows of stigmata, and the ahsence of cloacal systems), Hyperiodisroma and Sigillina, both with a posterior abdominal vascular appendage containing an extension of the epicardium and with the longitudinal body muscles extcnding along it. arc here considered members of the Holozoidae (sec abovc).

Polycitoridae as defined here contains six genera Archidistoma, Eudistoma (including Paessleria). Polycitor (including Tetrazona), Polycitorella, Cistoclites and 2 new monotypic genera Brevicollus n.gen. and Exostoma n.gen. Based primarily on replication, phylogenetic affinities of Polycitoridae appear with the Diazonidae, from which it is separated by its smaller embedded zooids without internal longitudinal branchial vessels, smaller gonads, viviparous larvac, and more prolific replication. 1t also appears related to the Stomozoidae having similar Iongitudinal muscles forming a pair of ventral bands on the ahdomen, and a long oesophagus.

The zooids of Sigillina, especially those specics lacking muscles on the posterior abdominal vascular appendage (S. fantasiana, S. nigra), resemble those of Eudistoma and Polycitor in several ways. This resemblance is enhanced where polycitorid species have a larger than usual vascular stolon (Eudistoma glaucum, E. superlatum n.sp.). However, the relationships of Sigillina
spp, to the Polycitoridae do not appear to be close. Polycitoridac are distinguished not only by their method of replication but also by their much smaller cooids, a continuous coat of transverse thoracic museles, absence of an extensive area of unperforated pharyngeal wall anterior and posterior to the stigmata, and (in all except Brevicollus nigen., Custodyter and Polyetiorella) a long oesophagus with the stomach at the posterior end of a long abdomen, absence of a stalked brood pouch, and relatively small larvac with small adhesive organs with small circular axial cones rather than the long ridges and platforms found in Sigillina,

The two largest genera (Eudistoma and Polycitor) of the Polycitoridue are similar. Fudistamu is distinguished from Polychor by its smaller zooids with short thorax, only 3 rows of stigmata, smaller gonads, and smaller larvae. Eudistoma has a characteristic long duodenal region, and small, almost spherical, and always smooth stomach. while Polycitor has a short duodenum, and a large and sometimes folded stomach. In Eudistoma the anterior row of stigmata is deflected dorsally afong each side of the mid-dorsal line - a phenomenon possibly associated with size reduction known in Pyonoclawslla and Cystodytes hut not in Polycitor. Further the test of Polycitor usually is transparent of translucent while in Euctistoma it often is opaque, and with few exceptions, is more brightly coloured than the test of most Polycitor spp. Eudisroma larval adhesive organs have a thicker axial protrusion than those of Polycitor, and more ectodermal ampullae. Zooids are arranged in rudimentary circular systems in Eudisooma, Polycitorella and Cystodytes but only rarely in Polycitor. Polycitorella and Cystodytes also have zooids that resemble one another in having particularly strong muscles. They are distinguishod primarily by the form and distribution of calcareous spicules in the test. Exostoma n.gen. is unusual in the development of a cloacal system and its pooids are adapted to accommodate that habit. Brevicollus n.gen. has many characters that indicate a divergence from the Polycitoridae. and therefore its phylogeny is problematical, and its inclusuon in this family is provisional.

Archidissoma is known principally from its 1 ype species A. aggregatum Garstang, 1891 from the English Channel. Both its zooids and larvae closely resemble those of Eudistoma, and Hartmeyer (1924), Van Name (1945) and Berrill (1950) suggested that separate generic status for Eudistoma and Archidistoma may be unjustified since the only difference hewween them is the form of the colony - the former species has embedded
zooids while those of Archidistoma from the type focation have cooids almost entirely separate, the basal part of the zooid only being embedded in common basal lest. Eudistoma discederatum Kott. 1981 from Fiji with yooids separate for at least half of their length resembles colonies assigned to Archidisroma aggregatam from the Atdantic coast of North America (Van Name 1945, fide Berrill 1950), and Madagascar (Vasseur 1969). In view of the wide geographie range represented by these records. it seems probable similarities in these small colonies are due to convergence, and separate specics may be involved. However at this stage there is no clarification of their genericstat us. Species such as E lavsani, E, butharum n.sp., and E. murrayi Kott, 1957 a with the anterior ends of the zooids protruding from the colony represent an intermediate condition which tends to support the view that the genera are synonymous. Archidistoma has priority over Eudistoma, in the event that they are synonyms.

The family affinities of Japanese colonies (Archidistoma aggregotum: Nakauchi. 1960, 1966) with rooids almost entirely embedded, and prominent posterior abdominal vascular stolons are uncertain. Specimens from New Caledonia assigned to the genus Aresidistoma by F. Monniot (1988) are species of Pynorlavella (sec above).

Eudistoma and Polycitor are well represented in Australia with both indigenous and Indo-West Pacific representatives. The cosmopolitan Gystodytes dellachiajei also uecurs arenund the Australian continent, and there are 2 indigenous species of Polycitorella. The lamily is not well representod in Antaretic waters, and despite the relatively high numbers of Australian indigenous species it temperate waters it is probable that its origin is in the tropics, where it abounds.

Key to the Genera of Porvgitoridae (* not recorded from Australia)

1. Cloacal systems extensive. . Exastoma n.gen Cloacal systems rudimentary or absent 2
2. Slumata in 3 rows . 3 Stigmata in >3 rows 2
3. Zooids separate ${ }^{*}$ Archidislomu Zooids embedded Eudistama
4. Calcarcous spicules present in the test 5 Calcareous spicules not present in the test . . 6
5. Stigmata in 4 rows Custodvers Stigmata in >4 rows.......... Polycifortla
f. Parastigmatic vessels present. \qquad Brevier/lus n.gen. Parastugmatic vessels not present ... Polyomor
Table 7. Sumary of Characifrs of the Specles Polycitor Rtcordfid from Al stralia

Species	${ }^{1}$ Biogeographic description	?Range around Australia	Colony shape	Colour (living)	Stigmata (rows:number row)	Stomach	Larval trunk (length mm)	Incubation (location: no. of embryos)	Other
P. calamus n.sp.	A.te	Spencer Gulf, SA-Botany Bay NSW	long cylindrical stalk. oval head	red head	9-13;35	12 folds	?	?	
P. cerasus n.sp	A.te	South Australia	dome-shaped sessile	red	10;25	8 folds	?	?	
P. nubilus n.sp.	A.tc	South Australia	spherical head on short thick stalk	cream	11:20	15 folds	?	?	
P. annulus n.sp.	A.tr	Capricorn Gp: Swain Reefs	mushroom-like head on short. thick stalk (small)	test transparent black $700 i d s$	8-10:20	12-15	0.8	abdomen: l	triradialiy arranged adhesive organs
P. circes	WP.tr	Martha Ridgeway Rf-Cockburn Snd	mushroom-like head on short. thick stalk (massive)	"	18 23;50	$\begin{aligned} & 20-30 \\ & \text { folds } \end{aligned}$	2.5	"	triradially arranged adhesive organs branchial sac narrows posteriorly
P. giganteus	A.tr-te	Port Hedland New South Wales	massive spherical or irregular	test transparent; white- orange zooids	$\begin{aligned} & 12-16 ; \\ & 30-40 \end{aligned}$	4 folds	1.4	atrial cavity: 12	branchial sac narrows posteriorly
P. translucidus	WP, tr-te	Shark BayHeron 1.	upright cylindrical rounded lobes	test transparent: yelloworange zooids	$\begin{aligned} & 8-10 \\ & 20-30 \end{aligned}$	smooth	0.6-0.8	$\begin{aligned} & \text { atrial } \\ & \text { cavity; } \\ & 3-4 \end{aligned}$	-
P. emergens n .sp.	A.te	New South Wales	upright cylindrical lobes	?	8:20	"	?	?	sandy test; basal half of lobes divided
P. subarborensis	A,te	New South Wales	dome-shaped	?	8:20	"	?	?	"
P. obeliscus	A.te	South Australia	conical sessile	?	6:12	"	?	?	embedded sand

[^4]
Genus Polycitor Renier, 1804

Type species: Polycitor crystallinus Renier. 1804
Species of this genus have relatively large 700 ids with a long oesophageal neck more than twice the length of the thorax. The rounded stomach is in the descending limb of the gut at the posterior end of the abdomen. There are from 4 to 20 or more rows of stigmata. Parastigmatic vessels are not present. Zooids are completely embedded in firm test. Colonies are stalked or sessile and cushion-shaped, upright or spherical. They range in size from only 1 or 2 cm in diameter to about 15 cm . Zooids are invariably relatively long, with a long oesophageal neck. They stretch from the surface of the colony to the base. In sessile, rounded colonies zooids converge to the centre of the base where the colony is fixed to the substrate. In preservative zooids are invariably lound contracted and drawn away from the surface. Body musculature consists of longitudinal bands extending from each of the siphons, along the thorax and onto the abdomen forming 2 wide ventral bands. Circular sphincters surround each siphon. An internal layer of circular muscles on the thorax sometimes is inconspicuous. Six to 12 branchial tentacles alternate with a variable number of smaller ones in a circle slightly anterior to the larger ones.

Larvae usually have a trunk of about 1 mm . although sometimes (P. circes. P. giganteus) it is longer. Ectodermal ampullac are median. sometimes bilobed and alternate with adhesive organs. The central protrusion of the adhesive organs is narrow and cylindrical. Adhesive organs sometimes are arranged triradially (P. annulus n.sp., P. circes).

The genus Distomus Savigny, 1816 is a junior synonym of Polycitor Renier. 1804. Savigny's name is also preoccupied by Distomus Gaertner, 1774, a synonym of Anphicarpa (Styelinae) (see Michaelsen 1904).

Polycilor is relatively diverse in temperate Australian waters being represented by 6 indigenous species. Only 3 species, viz. P. circes, P. annulus n.sp. and P. Iranslucidus are known from tropical waters. Only the latter has been rccorded from elsewhere in the Pacific. Polycitor circes and P. annulus are among the few tropical indigenous species known in any family of the Ascidiacea. Nine of the 10 species known from Australia are indigenous.

Key to the Species of Pofscitor

Recordein hrom Australia

1. Stomach with >4 parallel structural folds . . 2 Stomach with 4 or no structural folds 6
2. Colony with long cylindrical stalk
............................. P. calanıus n.sp.
Colony without long cylindrical stalk 3
3. Stomach with 20 or more stomach folds and more than 15 longitudinal thoracic muscles
. circes

Stomach with Icss than 20 stomach folds and less than 15 longitudinal thoracic muscles
4. Transverse thoracic muscles conspicuous

Transverse thoracic muscles not conspicuous 5
5. Colony transparent with black zooids....... P. annu/us n.sp.
Colony opaque with whitish zooids.
6. Stigmata in 10 or morc rows: 4 folds . P. giganteus
Stigmata in < 10 rows; stomach without folds . 7
7. Base of colony entire 8

Base of colony divided...................... . 9
8. Stigmata in 6 rows P. oheliscus

Stigmata in >6 rows P. translucidus:
9. Base of colony divided into regular branches, each branch containing a single zooid....
...... P. suharhorensis.
Base of colony divided into irregular branches, each branch containing up to 3 zooids P. ehtergensis n.sp.

The species collected by the Siboga Expedition that Sluiter (1909) described as Polycitor have only 3 rows of stigmata. Most are Eudistoma spp., and these and others are referred to in the discussion of that genus (sec below).

Polycitor annulus n.sp.

(Fig. 60)
? Polycitor circes: Millar, 1975, p. 205 (part, specimen from the Phillippines ZMC 20.iii.41).
Disiribution
Typr Localimy Queensland (Capricorn Group. Heron I.. under rubble near reef edge, low tide, coll. P. Kott May 1987. holotype QM GH4350: Wistari Reef. September 1984, paratypes QM GH4348: Wistari Reef, November 1986, paratypes QM GH4351; Heron I., May 1987. paratypes QM GH4356).

Firaher Ricoris: Queensland (Heron I.. QM GH4346 7 GH4349 GH4352 GH4354 5 GH4433 GH4472 GH4582; Wistari Reef, QM GH4353 GH4434; Swain Reefs, QM GH4346).

Description

Exterval. Appfarance: Colonies are small, wedge-shaped lobes up to 1 cm high. In life the upper surface is convex with zooids projecting

Fic: 60, Polvenor anmulus n.sp: a, colony (puratype QM GH434K); b-d, zoods showing incubating embryos (holotype QM GH4350): e, rooid showing gut loop and gonads paratype QM GH4348: f. larva (QM GH4472). Scates a, 5 mm : b-e. 1 mm ; $\boldsymbol{r}, 0.1 \mathrm{~mm}$.
slighty from the surlace, their openings showing at black circles in clear, transparent. glassy test. Zowids themselves are black, becoming blackish green in preservative and retaining that colour over a long period in alcohol. The test in soft and mas become slightly cloudy in preservative.

Ivireval Siricoller: Smalloonids, even when narcotised. contract away from the surlace of the colony. Zooids contain dark pigment. concentrated in patches behind the neural complex. around the base of the branchial siphon, over the anterior end of the endastyle, and in longitudinal bands down the lengtin of the thorax. Fuch aperture has 6 rounded lobes. The thorax is muscular with about 18 parallel longitudinal bands extending onto the abdomen as ? wide ventral
hands. There are 81010 rows of rectangular stigmata with about 20 per row - although. owing to the contraction, these are difficult to count.

The oesophagus is long, but lound wrinkled and contracted in all zovids examined: and. also as a result of contraction, the rectum is pleated and folded along its length. The stomach, in the posterior end of the abdomen, is usually ubscured by the rectum and hy large embryos that start their development at the base of the oviduct. The stomach is short and broad with 12 to 15 shallow. parallel, internal longitudinal ridges. Gonads are present in the gut loop. They consist of a lairly large cluster of relatively large male follicles and a 4 - or 5 -egg ovary. Although up to 3 embryos can be found moving up the ahdomen, only one
appears mature at a time and is found just behind the postero-dorsal corner of the thorax, projecting from the top of the oesophageal neck. Neither embryos nor larvae have been found in the thorax. Apparently fertilisation occurs at the base of the oviduct.

In the Capricorn Group mature gonads werc observed only in specimens collected in September (QM GH4348). However. developing embryos are present in May (QM GH4350) and March (QM GH4347). Thus, although neither mature gonads nor embryos were seen in specimens collected in October or November, breeding apparently occurs intermittently through the year. Larvae are large in relation to the sizc of zooids, the trunk being about 0.8 mm long. The tail is wound about threequarters of the way around the trunk. There is an ocellus and otolith. The 3 anterior adhesive organs have relatively short, thick stalks, and a short, relatively thick, flat-topped axial protrusion sct in the usual epidermal cup. The adhesive organs are triradially arranged rather than being in the median line. The larval epidermis at the base of their stalks is expanded into rounded swcllings.

Remarks: Superficially this species rescmbles Sigillina signifera in the distribution of pigment in its dark zooids, and transparent test. However, colonies and zooids are both smaller, and zooids lack a posterior abdominal stolon.

This species is characteristically polycitorid in all its characters except for the retention of the large larvae in the abdomen and the triradial arrangement of the adhesive organs - as in P. circes (see below). The former possibly is due to the size reduction of zooids without an associated reduction in the size of the larvae. The triradial arrangement of adhesive organs may be a primitive character retained in these species but lost in most species of the Polycitoridae.

Polycitor circes resembles the present species also in the large number of longitudinal thoracic muscles, although it has more stomach folds and about twice the number of rows of stigmata.

One of the specimens from the Philippines (ZMC 20.iii.41) assigned to P. circes by Millar (1975) has similar zooids and colony to those of the present specics. However, although it broods larvae in the abdomen, and has triradial adhesive organs as in P. annulus, the larval trunk is much larger $(2.5 \mathrm{~mm})$ and despite the small colonies. specimens probably are correctly assigned.

Polycitor calamus n.sp.
(Fig. 61. Plate 13a,b)
Distribution
Trpe Locality: Soulh Australia (Archipelago Cove 40 m , coll. W. Zeidler 28.1.82. holotype SAM E2058,
paratypes SAM E2051; Great Australian Bight, Flinders 1. in Posidonia 8 m , coll. N. Holmes 11.4.83, photo index PE0054 R998, paratype SAM E2057; Great Australian Bight, Avoid Bay 15-20m, coll. N. Holmes and S. Shepherd 9.4.87, paratypes QM GH4187-8 GH4308).

Further Records: South Australia (Spencer Gulf, SAM E2052-6). New South Wales (Kurnell Peninsula, AM Y2197).

The species is common in Posidonia beds.
Description
External Appearance: Colonies are robust, firm, cylindrical stalks up to 10 cm long and 1.5 cm diameter with a short spherical to conical head of slightly greater diameter than the stalk. The test of the stalk is transversely wrinkled, almost completely opaque. It narrows slightly toward the base, where its outer surface often becomes quite

Fici 61, Polıcitor calamus n.sp. (paratype QM GH4308): a. colony; b, zooid, part of oesophageal neck excised. Scalcs: a, 5 mm ; b, 2 mm .
leathery. Basally the test spreads out into flat holdfasts over the hard substrates, such as scallop shells, to which the colonies are attached. One or more stalks can arise from the basal test, and occasionally a stalk divides into two branches at about one third of its length from the base. The test of the head is gelatinous and translucent in preservative, and in life a bright vermilion. Patches of pigment remain on the surface of preserved specimens. Zooids, only up to 20 per colony, open around the head.

Internal. Structure: Zooids are long, extending from the surface of the head to the base of the stalk. In all preserved colonies the thorax of the contracted zooids is withdrawn from the head down into the stalk. Apertures are close together. Both have 6 well-defined lobes, those on the dorsal rim of the branchial aperture being larger than the ventral ones, suggesting the aperture is directed away from the atrial aperture in life. The body musculature is oblique to longitudinal, resembling clavelinids, with a formula 8E, 5B, 2A. The muscles run obliquely toward the postero-dorsal corner of the thorax where they extend in two strong bands along each side of the long narrow oesophageal neck that occupies most of the length of the zooid.

In the preserved zooids, 6 large coiled branchial tentacles are behind about 12 shorter, rather stumpy ones. The neural ganglion and gland are both large and oval. The neural duct is short and wide, opening in a simple, circular, anteriorly directed aperture in the prebranchial area. There are 9 to 13 rows of long rectangular stigmata with about 35 in each row. Transverse sinuses between the rows of stigmata extend out into long pointed dorsal languets over the large and conspicuous dorsal sinus that interrupts the rows of stigmata in the mid-dorsal line along the length of the pharynx. Dorsal languets are not flattened, and parastigmatic vessels are absent. A short unperforated area of pharyngeal wall lies anterior to the stigmata.

The relatively small stomach is in the posterior end of the abdomen. It has 12 distinct rounded folds along its length. No subdivisions of the long post-pyloric part of the gut were detected in these spccimens, nor were gonads, although vegetative cells were in the abdominal wall suggesting a vegetative phase. Only one colony (SAM E2052) had abdominal strobilae.

A juvenile colony with 4 zooids was taken in January from South Australia. Most other specimens were collected in January, one lot in April (SAM E2057) and the specimen from New South Wales in May. Data suggest a restricted
autumn breeding season, and replication from January until the winter months.

Remarks: The species is distinctive and readily identified by its small, vermilion head, long stalk and particularly long oesophageal neck. All of these characters, together with the absence of circular muscles, readily distinguish it from Polycitor cerasus n.sp., which is cherry red in life, and sessile. It differs from most Polycitor in having oblique muscles.

Polycitor cerasus n.sp.
 (Fig. 62a. Platc 13c)

Distribution
Type Locality: South Australia (Nuyts Archipelago, Franklin I., loc. c Breaking Reef, 15 m amongst algae. coll. N. Holmes 22.2.83, photo index PE044 R811 holotype SAM E2080, paratype QM GH4365).

Further Records None.
Description
Exiernal Aplpearance: Only the type material is available. Colonies are sessile and dome-shaped, about 3 cm high and 2.5 cm diameter. All the test, except the outer 0.5 cm thick layer over the upper surfacc, is crowded with sand particles. making it hard. A little sand is also present in the outer layer of test between the zooids. Zooids converge towards the centre of the colony, from the outer surface. Living colonies are cherry red, although this is lost in preservative.

The lower part of the colony probably is buried in sand, and irregular, sandy extensions from around the periphery of the basal surface probably help to anchor it.

Internal Structure: Zooids are robust, and. in this type material, about lom long contracted. Apertures are both anterior, and open separately to the outer surface of the colony. The rim of each aperture is deeply divided into 6 distinct lobes. The body wall is muscular with an almost continuous but thin outer layer of longitudinal bands, and a conspicuous inner layer of circular fibres. Longitudinal muscles form the usual wide ventral bands of muscle along the abdomen. Triangular dorsal languets are relatively narrow and have a long tapering point. There are 10 rows of about 25 stigmata. The stomach, just over halfway down the abdomen in these contracted specimens, has 8 rather irregular folds in the right (parietal) side. A post-pyloric duodenal area exists. and a short oval posterior stomach is constricted off before the rectum bends around in the pole of the gut loop.

Gonads consist of an extensive, rather diffuse mass of pyriform follicles and a few large eggs on the right side of the gut loop. Male follicles

Fici. 62, Podyciter cerasus nsp (paratype QM GH4365): a. zooid. Polvcitor circes: h, zooid (CM Gl44367): c. Larya (AM Y1303). Scales: a, 1 mm ; b. 2 mm ; c. 0.3 mm .
spread through the loop onto the left side. Two short, branching blood vessels project from the posterior end of the zoold.

Rमmakns. The species is unusual in having a mass of sand embedded in the test, making the colony hard to sce and obscuring its colour. Similar relatively large zooids converging toward the hase of the colony occur in many other species of this genus (e.g. P. mhilus n.sp., P. circes and P. ammilus n.sp.). The presem species lacks the dark pigment found in the preserved specimens of P. circes and P. anmulus, Colonies resemble those of P. ohelisetw in their general form, sessile habit. and the distribution of sand within the colony. Zooids of the present species with their folded stomacla distinguish if from P '. wheliseus.

Polycitor circes Michaclsen, 1930

(Fig. 62h, c)
Pubatotar amse Michaclsen. 1930. p. 495. Kott 1957a, p. 84:? 1966. p. 281. Millar 1963a, p. 710: 1975, p. 205 (? part, specimen from Marongas 20,3.19141. Monnios 198x, p. 207.
Polveitor getathoxa Kolt. 1957a. P. 83 (part, mut specinens trom Somb Australiat.
? Polucior renziwadai Tukioka, 1952. p. 96.
Distribition
Nrw Reronise Weatern Australia (Passage 1. WAM 1039.83; Broome. AM Y2192 Y2199: Dampier Arehipelago. WAM 11135.83 1042.83: Cervantes Reef. WAM 178.87 180.87: Houtmans sbrolhos, WAM 367.80 Q.M GHEIIO, WAM 144.88. AM V2191 Y2195; Cockhurn Sound WAM 1036.83). Queensland (Martha Ridyeway Reef, QM GH4367).

Prywnisiv Rurembrts: Western Mustralia (Cape Boileau, Broome - Millar 1963a: Cape Inseription AM Y1292 Kot 1957a; Shark Bay Michaclsen 1930; Cockburn Sound Michaelsen 1930; AM Y1302 Y1306 V1309. 10 P. gelantessa Kott. 1957a). New Caledonia (Monniot 1988). Philippines (Millar 1975).

Although there is a preponderance ol records Irom north-western Australia, the newly recorded specimen From Queensland suggests the species will be recorded from other tropical locations in the western Patioc. It is large, conspicuous, and not likely to be overlooked.

Describition
Estirsal Ampi arancil: Colonies are large up to 9 mm high and 7 cm in diameter. sometimes almost flat-topped but at other times mushroom to club-shaped, narrowing toward the base where there usually is a short, thick stalk, devoid of zooid openings. Otherwise zooids open on the upper surface and sometimes on the sides of the eolony and converge toward the top of the stalk. One colony (QM GH4367) is spherical, fixed by a small part of the base, but with rooid openings only on the upper half of the surface. The test is firm.
gelatinous and translucent. In preservative zooids are dark blue.

Internal Structure: Zooids are robust, measuring about 2 cm in length even in a contracted state. In preservative zooids have dark pigment, especially in the thoracic body wall and transversc branchial vessels, and forming a conspicuous patch at the anterior cnd of the endostyle. Branchial and atrial lobes, 6 of each, are rounded. The body musculature is strong, consisting of ahout 20 longitudinal bands that extend along the abdomen as two wide ventral bands. The usual circular muscles are around cach of the siphons, however the inner layer of transversc muscles is inconspicuous. Six large but st umpy branchial tentacles alternate with 3 smaller ones. The neural ganglion is large and spherical. The duct of the neural gland is short and the opening is circular and directed anteriorly. The dorsal languets are long and tapering. In the pharyngcal wall a wide. unperforated area cxists anterior to the 18 to 23 rows of stigmata. Up to 50 stigmata in the anterior rows are reduced to about half that number posteriorly.

The oesophagus is long, and invariably is wrinkled in these contracted zooids. It opens into the small, rounded stomach in the posterior end of the abdomen. The stomach wall has 20 to 30 narrow, parallel longitudinal folds. A constriction between an inconspicuous posterior stomach and the rectum is in the pole of the gut loop. The anal border is divided into two large smooth lips. Gonads, a mass of pyrilorm male follicles with a 3 or 4 egg ovary, are in the gut loop posterior to the stomach.

Ova are fertilised at the base of the oviduct and develop as they move up the abdomen. Their incubation is completed in the top of the abdomen just posterior to the atrial cavity rather than in the atrial cavity as in most other species of the genus. Larvae are present in April in colonies from the Abrolhos (WAM 367.80) and from Rottnest 1. (> P. gelatinosa Kott, 1957a). The larval trunk is about 2 mm long, with a large part of that length (about two-thirds) anterior to the oozooid taken up by a yolk mass. The short thick stalks of the 3 (triradially arranged) adhesive organs are not expandcd into ectodermal ampullae. The central protrusion of cach adhesive organ is rather narrow and cylindrical.

Remarks. The relatively numerous rows of stigmata, longitudinal muscles on the thorax, and longitudinal stomach folds, as well as the larvae and the pigmentation of the zooids distinguish this species from Polycitor giganteus which has a similar bulky, and firm gelatinous colony and a
similar long branchial sac that narrows towards its posterior end. The long yolk-filled anterior part of the larval trunk is unique. The abdominal brooding of the larvae and triradial arrangement of adhesive organs was also observed by Millar (1963a and 1975), and occurs also in P. annulus n.sp. from Heron 1. (see above).

In preservative the colonies sometimes resemble those of Sigillina grandissima, especially since the zooids are the same dark colour. The latter species is distinguished by its long vascular stolon, relatively short oesophagus, smooth stomach and more conspicuous transverse muscles. Eudistoma superlatum $\mathrm{n} . \mathrm{sp}$. also forms massive but lobed colonies. and has a long vascular stolon (unlike the present species).

Millar (1975) assigned 3 colonies -2 from the Philippines and one from the Kei Is - to this species. They are all small finger- or club-shaped lobes, joined basally, and are not the large gelatinous cushions of the present material. Therefore only the Marongas specimen 20.3.1914 (which has the characteristic larva) can be positively assigned to this species. The specimen from the Kei Is resembles Clavelina arafurensis in the proportion of oblique to longitudinal muscles, although the orange vesicles in the test reported by Millar have not been recorded for C. arafurensis. One colony from the Philippines (ZMC 20.iii.14) may be a colony of Polycitor translucidus, with characteristically long zooids and parallel longitudinal thoracic muscles.

Spccimens from New Caledonia (Monniot 1988) have a smaller than usual larval trunk (1.6 mm long).

Polycitor emergens n.sp.

(Fig. 63)
Disikibution
Typr Locality New South Wales (off Cronulla, 60 m . coll. J. McIntyre 17.6.65, holotype AM Y II 24. paratypes AM Y837).

Furtier Records: None.

Describilion:

External Appearance: Colonics consist of upright cylindrical finger-like lobes arising from a common basal mass of test concealed by an almost spherical mass of sand. The sand can be removed to show the basal mass of test subdivided into irregular branches covercd with fine, branched and rather ragged, flat, narrow, tag-like projections of the test to which the sand adheres. These act as roots holding the colony firmly in the sandy substrate. The upright, free lobes of the colony are up to 2 cm long, and the hasal sandy part is about 1.5 cm in diameter. The test is

Fic. 63, Polycitor emergens n.sp. (paratypes AM Y837): a. colony; \mathbf{b}, colony with sand removed from basal half showing zooids extending out into basal rootlike branches; c, thorax. Scales: $\mathbf{a}, \mathrm{b}, 2 \mathrm{~mm} ; \mathrm{c}, 0.5 \mathrm{~mm}$.
translucent and relatively soft on the upper free ends of the cylindrical lobes, but becomes tougher toward the basc, where the surface layer is transversely wrinkled and opaque. The basal sandcovered part of the test is tough.

Zooids are parallel to one another and open to the surface on the top of each upright lobe where the test is particularly delicate. They are long, and the posterior ends of from one to 3 or more extend out into each branch of the basal part of the colony.

Internal Structure: Zooids are contracted in both the holotype and two paratype colonies. Both apertures are anterior, cach with 6 welldefined lobes. Nine or 10 strong parallel longitudinal muscles have the formula $6 \mathrm{~B}, 2 \mathrm{D}, 2 \mathrm{~A}$. They extend in 2 broad bands along the ventral part of the abdomen. The internal layer of circular muscles is inconspicuous, dorsal languets are triangular with a long point, and there are 8 rows of stigmata with about 20 per row.

The usual long oesophagus opens into the smooth stomach in the posterior third of the
abdomen. The anal opening is bilabiate. Gonads, present in the gut loop, have relatively small pyriform male follicles.

Remarks: The tendency for the basal part of the colony to break up into branches into which the posterior ends of the zooids project has been recorded only in this genus - in the present species and in Polycitor subarborensis (see below). The present species can be distinguished by its small, upright, cylindrical colony lobes, and its irregular basal branches, each containing the posterior part of several zooids. Only the tips of the sandy basal branches of P. subarborensis are produced into the fine and sometimes relatively long branching root-like tags produced from the test. In the present species these occur all over the basal test and hold the thick coat of sand around the base of the colony. Zooids of P. subarborensis also have morc numerous muscles than the present species.

Basal stolons of certain clavelinid and pycnoclavellid colonies which support separate zooids are not homologous or even analogous with the basal branches of these Polycitor colonies in which the upper parts of the zooids are entirely embedded. Basal branches of both the prescnt species and P. subarborensis appear, at least functionally. analagous to the basal root-like processes of stolidobranch ascidians, by which they are attached to or are rooted in the substrate. However, they are not homologous. The present colonies are unusual in that the projections by which they are anchored contain the posterior ends of the zooids and are not merely solid outgrowths of the test. Zooids of P. subarborensis and the present species project to the end of the basal branches of the colony. Thus these basal branches secm homologous with basal parts of colonies of other species in the genus, and probably are the result of subdivision separating the posterior ends of the zooids from one another, rather than simple outgrowths of the test.

It is the form of the colony and its tough test that distinguishes the species from Polycitor translucidus which has similar long, but narrow, zooids with only about 8 rows of stigmata and a smooth stomach.

Polycitor giganteus (Herdman. 1899)
(Fig. 64. Plate 13d-h)
Polyclinum giganteum Herdman, 1899, p. 79.
Polycitor giganteus: Kott. 1957a, p. 83; 1972a, p. 9; 1972b, p. 171; 1972d, p. 244; 1975, p. 2; 1976, p. 57. Millar, 1963a, p. 709. Not Sluiter, 1919, p. 10. Polvclinum globosum Herdman, 1899, p. 80.
Polcitor gelatinosa Kott, 1957a, p. 83 (part, specimens from South Australia).

Fis. 64. Polbcitor giganteus: a,b. zooids (SAM E2065, AM E1841): c, thorax (SAM E.2076); d, gonads and proximal part of rectum (SAM E2076); e-g. successive stages in development of larvac (1 M YK05). Scales. $a-d, 1 \mathrm{~mm} ; c-g, 0.2 \mathrm{~mm}$.

Thistrinvion
New Recorts Western Australia (Port Hedland, WAM 103883. Shark Bay; WAM 821.83 QM GH2141). South Australia (Great Austrahan Bight, SAM E2067. QM GH025 GH931 GH1291 GH2318 GH2386 GH2388; Spencer Gulf, SAM E2060-2 E2068. QM GH4853: Nuyts Archipelago. SAM E2063-4. QM GH2306: Vorke Peninsula, SAM F2066, QM GH2373; St Vincent Gulf, SAM E2065. QM G9314: Kangaroo 1.. SAM E2069. QM Gll990), Tarmania (Flinders L. QM GIll291; Oyster Bay, AM U358), Victoria (Ninety Mile Bench QM Glls62; Bass Strait. MV: Gubo I... OM (G9478). New South Wales (Bermagui. AM Y2194; Jeryis Buy. QM G10021-4; Port Stephens, AM Y2000: Botany Bay, QM G10164; Clarence River mouth, AM E1841: Arrawarra, GH4357: Solitary 1. QM G9635; Lord Howe 1., QM GH4376). Quęensland (Mooloolabah, QM (.) H 4324).

Previoust F Recorprobe South Australia (Great Austraban Bight - SAM E2072 F2075-6 Kott 1972 b 1976; St. Vincent Gulf AM Y1304 P. gelatinase: Kout 1957a. SAM D239 E207I F2074 Kott 1972a: Investigator Sirati Kott 1972b, West L - Kott 1972a 1975) Victoria (Iukes Entrance AM Y1130 Y1312 Kutt 1957a: Port Phillip Bay - AM Y 1295 Kott 1957 a 1976, Millar 19033; Western Port AM Y1293 Koit 1976; Mallacootalniet - Kott 1976). New South Wales (Jervis Bay. Port Jackson - AM Y 393003934 Herdman I K90. AM YI294 Y1305 YI 308 Kott 1957a. Millas 1963a: Botany Bay - AM Y805 Y808 Y810 8831 Kott 1972d).
The species is commort in shallower waters (sobtidal is 27 m) from southern Australinto Port Jackson (NSW). but has alko been taken down to 400 m off the NSW coast off Bermaguf (AM Y2194). It appears an Australian indigenous species recorded most commonly around the south-castern half of the continent.

Description

Exilrnar Amparance: Colonies are massive, up to 12 cm in diameter They are spherical to mp-shaped, fixed by a part of the undersurface which usually torms a short, thick stump that just relevates the colony above the substrate. The test is always firm and gelalinous, and completely transparent and glassy to cloudy and translucent. Zooids usually open around the sides and upper surface of the colony, although occasionally in relatively small colones, sooid openings are confined to the upper surface Zooids converge from the surface in toward the centre of the base of the colony, In preserved colonies they are invariably found contracted and withdrawn from the surface, The rooid openings are arranged evenly on the surface of the colony but their posterior ends cross one another when they are withdrawn from the surface. Zooids are not in systems. In living colonies the test is usually glassy and transparent. and zooids are either bright orange or white and can he seen as white or yellow streaks radiating out from the centre of the
transparent colonies. In preservative zooids are etther white or pinkish, however, there is no correlation between living and preserved colours - colonies reported by the collectors to have had bright orange zooids are etther pinkish or white in preservative, as are zooids reported to be white when living.

Internal Structurf: Zooids are robust and long. even in a contracted state they can measure to 1 cm, and in life are much longer. They have 6 well defined lobes around each aperture. The body musculature is strong, consisting of 12 longitudinal thorack bands on each side which continue along the length of the abdomen as two wide ventral bands of muscle. Thoracie bands exiend from the branchial siption, from the space between the siphons, and from the other siphon accorditg to the formula $6 \mathrm{~B}, 3 \mathrm{D}, 3 \mathrm{~A}$. None of the longitudinal musele bandseross the endostyle. The transverse or circular musculature is usually inconspicuous, except for the sphineter musctes around each siphon. The transverse wrinkles of the ectodermal layer of the hody wall resulting from contraction of the thoracic muscles can be mistaken for transverse muscles on superficial examination of the zooids. The neural complex is large and the opening of the neural gland is a simple circular opening directed forwards. Six large but tather stumpy branchial tentacles alternate with shorter ones. Dorsal languets on the dorsal simus are long and pointed. There are 12 to 16 rows of long rectangular stigmata, invariably found contracted. In a large specimen from Bass Stratt there are 16 rows on the right and an additional half-row that does not reach the dorsal line on the left. Although often difficult to count, there appear to be between 30 and 40 stigmata in all rows except the posterior anes. In one relaxed specimen (SAM E2076) there are 40 in the anterior and 20 in the posterior rows. Parastigmatic vessels are absent.

The ocsophagus is long, opening into the elongate stomach near the posterior end of the abdomen. The stomach wall has 4 grooves. and when collapsed it forms 4 pronounced folds. The posterior stomach, about the sarme length as the stomach, and separated from it by a short duodenal area, opens into the rectum in the pole of the gut loop. The anal border is bilabiate, Gonads, consisting of numerous male follieles and a small quary, are contained in the posterior end of the gut loop behind the stomach at the posterior end of the abdomen. There are 2 or 3 shori vascular appendages.

Embryos occur in specimens taken from South Ausiralian waters in September (QM GH4853)
and October (SAM E2075) but not in February or May. In November they are in specimens from Port Phillip, Bass Strait (MV) and Botany Bay (AM Y816). However, they are present also in June in Botany Bay (AM Y805), October at Lord Howe 1. (QM GH4376), and January at Lakes Entrance and Rottnest 1. (AM Y1310). Thus records suggest sexual reproduction may occur throughout the year. Ova probably are fertilised in the atrial cavity, where up to 12 eggs and embryos at various stages of development occur. The larval trunk is 1.4 mm long, and the tail is wound half to three quarters of the way around it.

Single median ampullae are in the anterior midline dorsal and ventral to and alternating with the stalked adhesive organs. Ampullae subsequently become bilobed. In mature larvae they often appear as paired lobes. An otolith and ocellus are in the cerebral vesicle, and a large mass of yolk in the centre of the larval trunk. The protruding part of each adhesive organ is rather narrow and cylindrical.

Remarks: Preserved colonies of this species are readily confused with Polycitor circes which also has large gelatinous colonies, and zooids with a long thorax decreasing in width posteriorly. However, the zooids of P. circes have more numerous longitudinal muscle bands, rows of stigmata and stomach folds.

Kott's (1976) suggestion that the orange in certain colonies occurs when the zooids are not withdrawn from the surface was not confirmed in the present study although eggs and larvae of both white and orange zooids contain the same orange pigment in the yolk. Orange zooids also have pigment in the body wall, and it is absent from the white zooids. Apparently there are two colour phases of this species. The great range in numbers of rows of stigmata referred to by Kott (1957a et seq.) probably results from difficulties in counting these in contracted zooids.

Polycitor nubilus n.sp.
(Fig. 65a,b. Plate 13i)
Distribution
Type Locality: South Australia (Investigator Group, Flinders I., Lighthouse Point in caves and overhangs 8 m , coll. N. Holmes, photo index PE0071/R969. holotype SAM E2079).

Further Records: None.

Description

External Appearance: The holotype colony is the only specimen available. It has an almost spherical head about 4 cm in diameter and a short thick stalk about half the diameter of the head.

Fig. 65, Polycilor nubilus n.sp. (holotype SAM 2079): a, zooid; b, colony outline. Polycitor obeliscus (holotype MV H167): c, zooid; d, colony outline. Scales: a, $0.5 \mathrm{~mm} ; \mathrm{b}, \mathrm{d}, 1 \mathrm{~cm} ; \mathbf{c}, 1 \mathrm{~mm}$.

Zooids are relatively crewded. opening all around the head. In lite the colony is a cloudy, cream colour. with translucent circular ateas over each sonid, scparated from one another by narrow bands of opaque test. In preservative the test of the head is gelatinous, pranslucent and a slightly rosy colour.

Internal Sikuentrl; Zooids are dark in preservative, with pigment particles scaltered in the body wall, especially around the anterior end. /uoids are muscular, and contracted. Each of the apertures is deeply divided into 6 pointed or rounded lobes. Longitudinal thoracic muscles from the siphons and the intersiphonal interval lave the formula 6B.3D.3A. They continuc along the abdomen as two wide ventral bands and terminate at the posterior end ol the pooid. Iransverse muscles are inconspicuous. Twelve liarly long tentacles in a posterior circle alternate with 12 shorter ones in a second circle. Small. irregularly spaced tentacles are in an anterior circle. The simple opening of the neural gland is dirceted antcriorly. Tltere arc 11 rows of about 20 rectangular stigmati.

The long ocsophagus upens into the stomach iti the posterior quarter of the abdomen. The stomach wall has 15 parallel longitudinal lolds. Arioval posterior stomach is constricted off from the rectum in the pole of the gut loop. Cionads are present in the gut loop. There is a short. branched vascular extension lrom the posterior end of the body.

Remarks: Although photographs of the living specimen do not show the cooids pigmented, the dark pigmentation of the preserved specimens is conspicuous and distinctive. Unlike Polroitor armulus. n.sp.. which has darkly pigmented living tooids as well as preserved ones, the pigment particles are not in longitudinal lines down the thorax in the present species but are scatlered sather evenly in the body wall. becoming more crowded anteriorly. Branchial sach are similar in the two species. In addition to the arrangement of the pigment particles in preserved specimens. P ammulur n.sp. differs from the present species in having a clear uansparent test and more numerous (18) longitudinal muscle bands. Of the other Polyeitor spp. with a folded stomach. P. culamus n.sp. is distinguished by its colour and long cylindrical stalk. P. circes has more numerous. longitudinal thoracic muscles and rows of stgemata, and P. serasus n.sp. has conspicucus circular thoracic muscles as well as the longitudinal enes. The larva of the present new species is not known.

Polycitur whelisens Kont. 1972
(F-ig. h.5c.d)
Pohtcoser whatseram Kott, 1472b, P. 171.

Niw Ricentms None.
 (or Siran hefotype MV H167).

DTKeription

Enitrnal Appisasuct; The holotype is the only colony ayailable. The colony is an upright cone 5 cm high and ahoul 2.5 cm in diameter around the base. It is firm. with sand throughout she internal test. Sand is also in the surface text around the base of the colony, hut ahsent frome the surface test of the upper part. Zooids open all over the upper surface of the colony, and they converge inwards at an angle to the surlatec. Between sand grains the test is liom and translucent.

INARVA Sikuchro: Zooids ate sbout ymmi long hut are contracted. The thoran has an almont continuous coat of outer longitudinal muselc hands overlying the layer of cercular ones. I he longitudinal muscles continue along the length of the abdomen in 2 wide bands.

There are 6 rows of about 12 stigmata. However. stigmata art hard to count owing to the contraction of the thorax -- and it is possitle there are more. The oesophageal necks of the zooids are particularly long. An almost sphervial. relatively short and smooth-walled stomach. an expanded duodenal area and a short rounded posterior stomach are in the descending limb of the gut loop at the posterior end of the abdomen. Mature gonads are not present in these rooids (collocted in alanuary). The larvate are not knowh.

Rumarks. The species is unusuat in Polycitor in hasing embedued sand. and relatively few rows of stigmata, The rooid, muscular, and thus resembling P ' eircess is readily distinguished from it hy the smooth stomach and cmbedded sund.

Polycitor subarborensis Kutt, 1957
(Fig. 6па c)
Poblevien suharhorensess Konle. 1957a. 万. 81.

Nu Rurarus None.
 AM Yizge hotorypel

Exterad Aprot arance. The colony is a smiall. more or less dome-shaped, glassy. transparenl. sessile cushion about lem in diameter but only ahout 0.5 cm high, with 9 or 10 cylindrical, sandcovered root-like structures about 1 cm long

F1G. 66, Polycitor subarborensis (holotype AM Y1298): a, colony; b, zooid, c, larva. Polycitor translucidus: d, colony (QM G4332); e, zooid with embryos (QM GH4345); f, much contracted zooid with embryos (QM GH4343); g, larva (QM GH4325). Scales: a, 2mm; b,e,f, 1 mm ; c,g, 0.2 mm ; d, 5 mm .
projecting down and out from the under surface of the glassy dome. Occasionally they branch once along their length. The sand is embedded in their surface test. Zooids open on the upper glassy surface of the colony and project down into the sandy root-like branches, each terminal branch containing the posterior end of one zooid. The terminal ends of these branches also have some rather short irregular test processes to which additional sand adheres. An irrcgular knob of zooid-free test growing from the upper surface may be an abnormality.

Internar. Structure: Zooids are withdrawn from the upper surface in this contracted colony. Both apertures are anterior, with a sphincter around the base of each short, 6 -lobed siphon. Longitudinal muscles are numerous, arranged on the thorax according to the formula $12 \mathrm{~B}, 2 \mathrm{D}, 2 \mathrm{~A}$. The 6 most ventral muscles lie fairly close to one another, crowded together along each side of the endostyle. Transverse muscles are inconspicuous.
On the abdomen, the muscles form 2 or 3 exccptionally widc bands leave only the dorsal border muscle-free. There are 8 rows of about 20 stigmata. The oesophagus is, as usual, long. opening into the smooth-walled stomach in the posterior end of the abdomen. Gonads are large, with short, lobed, pyriform male follicles and about 12 eggs in the ovary.

The holotype colony, which was collected in January, has single embryos near the surface of the head, although none in the zooids themselves. These embryos may have been ejected by the zooid as it contracted and withdrew from the surface while being collected. The larval trunk is moderately large (1 mm long), with a thick, tough test. The tail reaches the anterior end of the trunk. Three median adhesive organs alternate with ampullae. These ampullae are single and median in the immature larvae, but they subsequently subdivide into paired lobes, as in the laryae of Polycitor giganteus. The central protrusion of the adhesive organs is narrow and cylindrical.

Remarks: Both larvae and zooids (with 8 rows of stigmata and the smooth-walled stomach that may collapse into 4 folds) are similar to those of P. translucidus. However, the present species has more longitudinal thoracic muscles, and the division of the basal half of the colony into sandy root-like process is an almost unique feature, shared only with P. emergens n.sp. (sec above).

Polycitor translucidus Kott, 1957

(Fig. $66 \mathrm{~d}-\mathrm{g}$)
Polvcitor translucida Kott, 1957a, p. 81. Monniot and Monniot 1987, p. 70; Monniot, 1988, p. 209.

Polycitor circes: Millar 1975. p. 205 (part, specimen from
the Philippines ZMC 19, iiii.41).
? P. crystallinus: Monniot, 1988, p. 209.
Distribition
Nuw Recorbs: Western Australia (Shark Bay, WAM 82.83 1041.83; Cockburn Sound, WAM 1034.83). Vicioria (Wilson's Promontory, MV F54184). Qucensland (Maroochydore, QM GH4329 GH4358; Wislari Reef, QM GH4333 GH4339 GH4436; Heron I., QM G10010 GH4325-32 (iH4334.8 GH4340-5 (iH4368 GH4370 GH458.3).

Prrviously Recorided: Western Australia (Rottnest 1. - Kott 1957a). French Polyncsia (Monniot and Monniot 1987). Philippines (Millar 1975). New Caledonia (Monniot 1988).

The few reeords of this speeies, other than from Heron 1. where collecling effort has been greater than elsewhere, may be becausc of its cryptic habit and its completely transparent glassy tes1. its recorded range suggests a West Pacifie species probably with the usual wide geographic range of that fauna (see Kot1 1985).

Description

Extirnal. Appearance: This beautiful species has a wedgc-, mushroom-, top-shaped to upright almost cylindrical colony tucked into small crevices from which its upper surface protrudes. The narrow upright colonies, in which the head is not expanded and the number of zooids are fewcr are apparcntly younger than the others. Colonies are up to 2 cm in diameter on their upper surface - which may be flattened or rounded, and about 1.5 cm high. They are fixed by a short stalk often separated from the expanded hcad by a slight constriction. Zooids extend down into the base of the stalk. The test of the head is absolutely clear and glassy and the zooid openings show on the surface as fine white rings that disappear as the zooids withdraw from the surface when they are disturbed.

In life the thoraces of the zooids are "buff ycllow, 'salmon buff', 'maize yellow', to 'deep chromc' (Ridgeway 1886). The stomach is usually cadmium orange' and developing embryos are also orange. In preservative they are cream to pink.

Internal. Structure: Zooids, when partially relaxed. are about 7 mm long. They have 6 rounded lobes around each aperture, and a shallow band of circular muscle fibres around the basc ol each short siphon. Nine to 12 wall separated, longitudinal muscle bands on the thorax have the formula $6-8 \mathrm{~B}, 1 \mathrm{D}, 2-4 \mathrm{~A}$. These continue along the abdomen in the usual 2 wide ventral bands. Twelve rather long tentacles alternate with small almost rudimentary ones. Dorsal languets are long and pointed. There are 8 to 10 rows of about 20 to 30 stigmata. The larger colonies (MV F54184, WAM 1041.83) have the maximum numbers of longitudinal muscle bands and stigmata.

The oesophagus is long but usually wrinkled, while the rectum is bent, undulating and folded in the fixed specimens - which, even though narcotised, and with the thorax relaxed, always have a contracted abdomen. The stomach, in the posterior end of the abdomen has a suture line, but apparently no folds. There is an oval posterior stomach and a constriction in the pole of the gut loop separates it from the rectum. The anal border at the posterior end of the atrial cavity is bilabiate.

Gonads with small pyriform sometimes bilobed male folliclcs are in the gut loop, posterior to the stomach. Larvae probably are fertilised and complete their development in the posterior part of the atrial cavity, where up to 6 embryos are crowded. Larvae are in colonies collected in May, July, August and November, but not in colonies collected between January and March - the hottest time of the year at Heron 1. where diurnal temperature variations in the intertidal area are high.

Larvae are small, with a trunk 0.6 to 0.8 mm long. The tail is wound half to three-quarters of the distance around the trunk. The 3 adhesive organs, on narrow stalks, alternate with conical ectodermal ampullae in the median line. The central protrusion of the adhesive organs is narrow and cylindrical.

Remarks: One of the principal characteristics of this species is the small size and simplicity of its zooids (which probably is a result of its small size), viz. relatively few rows of stigmata and muscle bands, a smooth stomach (rather than one with folds), and small larvae. The colour of the living specimens resembles the range found in Polycitor giganteus, although the test is clearer and more glassy in the present species.

Specimens from New Caledonia assigned to the Mediterranean P. crystallinus by Monniot (1988) may be synonyms of the present species although their colonies are larger than usual. Both zooids and larvae are similar, and it is possible the colonies increase in size with age, and in sublittoral habitats.

Genus Cystodytes Drasche. 1884

Type species: Distoma dellachiajei Della Valle, 1877.

The genus is characterised by the presence of a capsule formed of layers of overlapping saucershaped calcareous spicules that encases the abdomen of each zooid, and into which the whole zooid sometimes withdraws when it contracts. The cavity in the firm, gelatinous and translucent test in which the zooids are contained is hourglass-
shaped - the thoracic and abdominal compartments being partially separated by a constriction of the test with a circular constrictor muscle embedded in it. This circular muscle is connected to the zooid around the top of the oesophageal neck. The strong musculature consists of a thoracic meshwork of longitudinal and transverse bands, with the longitudinal muscles continuing onto the abdomen as a pair of wide bands, one on each side of the mid-ventral line. There are 4 rows of stigmata without parastigmatic vessels. The shieldshaped stomach is smooth, in the posterior half of the abdomen. Gonads, consisting of a circular arrangement of club-shaped testis follicles converging toward the vas deferens at the centre of the circle, and an ovary containing one egg, are in the gut loop. Zooids, usually in circles with the atrial apertures in the centre of the circle, form rudimentary systems as in Eudistoma and Polycitorella.

A single large embryo incubates in the brood pouch, which is constricted off from the body wall at the top of the abdomen. The egg apparently is fertilised at the base of the oviduct. As it increases in size and moves up the body it projects from the side of the abdomen and becomes more constricted from it.

The larva has primarily 3 stalked adhesive organs in the anterior mid-line surrounded by a circular fold of the larval ectoderm. As the larva matures, long radial grooves develop between the base of this fold and its anterior edge. Subsequently the grooves perforate leaving, embedded in the test around the adhesive organs, a ring of ectoderm attached by strands to the main part of the larval trunk. This unusual apparatus is homologous with the ectodermal ampullae of other forms. Instead of separate external ampullae projecting from around the anterior end of the trunk, a continuous ring of ectoderm projects forwards.

Adhesive organs have a large conical central protrusion with the same bulbous appearance as the central cone of the adhesive organs in Distaplia (see Cloney 1977), and differing from the more or less cylindrical, flat-topped, central protrusion generally found in the adhesive organs of the Polycitoridae. There also are 4 rows of stigmata in the oozooid like Distaplia.

Despite this resemblance to larvae of Distaplia, the relationships of the genus appear with Polycitorella, which also has particularly muscular zooids, a constrictor muscle embedded in the test around the top of the oesophageal neck, calcareous spicules. and a single embryo brooded at the top of the abdomen.

Cystodytes may be more diverse than is known at present. However, although several species have been described, their distinctions from the apparently wide-ranging species Cystodytes dellachiajei are not satisfactory. As could be expected for such a wide-ranging species, the recorded specimens demonstrate a deal of diversity reflected in the pigmentation and size of the colonies. Although at this stage the diversity in specimens assigned to this species is attributed to intraspecific variations, it is possible that genetic studies could establish patterns that result from speciation. Zooids are remarkably uniform, although their strong musculature does allow for a degree of flexibility in their superficial appearance.

Cystodytes dellachiajei (Della Valle, 1877)
(Fig. 67. Plate 14a-d)
? Aplidium lobanum Della Chiajci, 1841, p. 30.
Distoma dellachiajei Della Valle, 1877, p. 40.
Cystodytes dellachiajei: Hartmeyer, 1912, p. 171. Michaelsen. 1915, p. 483; 1923, p.28; 1930, p. 501. Harant, 1929, p. 41. Van Name, 1945, p. 133. Brewin, 1948, p. 119; 1951, p. 104; 1952a, p. 452; 1956c, p. 122; 1958, p. 44; 1960, p. 119. Kott, 1954, p. 154; 1972a, p. 11; 1972b, p. 172; 1981, p. 154. Tokioka, 1950, p. 120. Millar, 1953b. p. 284: 1960, p. 82: 1962, p. 143; 1963a. p. 713; 1964, p. 166; 1966a, p. 365 ; 1978, p. 100; 1982, p. 15.
Cystodytes dellachiaiae: Van Name, 1921, p. 360. Berrill. 1932, p. 78. Kott, 1957a, p. 68.
Cystodytes Della Chiajei: Pérès, 1948, p. 17.
Cystodyres durus Drasche, 1883, p. 13.
Cistodyes cretaceous Drasche, 1883, p. 18.
Cystodytes draschii Herdman, 1886, p. 137. Van Name, 1902, p. 347. Michaelsen, 1915, p. 484 (draschei); 1924, 1924, p. 286 (draschei).
Cystodytes philippinensis Herdman, 1886, p. 140: 1891. p. 615. Sluitcr, 1909, p. 28. Caullery, 1909, p. 45. Hartmeyer, 1909, p. 1434. Van Namc, 1918, p. 138. Cystodytes aucklandicus Nott, 1892, p. 323.
Cystodytes perspicuus Nott, 1892, p. 326.
Cystodytes violaceus Van Name, 1902, p. 348. Harant, 1925, p. 3.
C.1stodyles ceylonensis Herdman, 1906, p. 334.

Custodytes hapu Monniot and Monniot, 1987. p. 64.

Disiribution

New Rfcords: Western Australia (Port Hedland. WAM 1013.83; Recherche Archipelago, WAM 149.75; Shark Bay, WAM 827.83; Cervantes Reef, WAM 194.87; Houtmans" Abrolhos. WAM 386.75825 .83200 .88 204.88; Dongara WAM 1011 2.83; Cockburn Sound. WAM $8.75 \quad 865.82817 .83 \quad 919.83$ 1010.83). South Australia (Great Australian Bight, QM GH2382; Spencer Gulf, QM GH4404; St Vincent Gull, QM GH2401-2). Tasmania (d'Entrccasteaux Channel QM GH9996). Victoria (Portsea, QM G11922). New South Wales (Jervis Bay, QM G10019). Qucensland (Capricorn

Group, QM G9481 G9596 G9890-3 G9895 G9897-9 G9901-7 G9922 G10017-8 G10033 GH3478-9 GH3816 GH4383-4 GH4412 8 GH4443-6 GH4476; Lizard I, GH3118 GH3826).

Previousiy Rfcorded: Western Australia (Dampicr Archipelago Millar 1963a; Shark Bay - Michaclsen 1930; Cockburn Sound - Michaelsen 1930, Kott 1957a; Albany - Kott 1954 1957a). South Australia (Great Australian Bight - Kott 1972b; St. Vincent Gulf Kott 1972a). Tasmania (Maria I. Kott 1954). Victoria (Port Phillip Bay - Millar 1966a; Barwon Heads Millar 1966a). New Zcaland (North, South and Chatham Is - Nott 1892, Michaelsen 1924. Brewin 19481951 1952a 1956c 1958, Millar 1960 1982). New Caledonia (Monniot 1988). Palau 1s (Tokioka 1950). Philippines (Herdman 1886, Sluiter 1909, Van Name 1918). Fiji (Kott 1981). Tahiti (Monniot and Monniot 1987). Sri Lanka (Herdman 1906). West Indian Ocean (Mozambique Millar 1962). Mediterrancan (Della Valle 1877, Drasche 1883. Harant 1925 1929). Eastern Atlantic (West Alrica - Michaclsen 1915, Millar 1953b, Pćrćs 1948, Callary Is Hartmeyer 1912; Azores Michaelsen 1923). Western Atlantic (Bermuda Van Name 1902; Brazil

Herdman 1886; Millar 1978; Patagonian Shelf Millar 1960; Virgin 1s - Van Name 1902). Eastern Pacific (California - Van Name 1902).

The species is not confined to the tropics. It extends around the temperate coast of Australia, and south to the Patagonian region in the eastern Pacific. In the Atlantic it extends north to the Azores and Canary 1 s . There arc two surprising gaps in the recorded range the species is not known from either the western Pacific north of the Philippines, or from South Africa. It could be expected to occur in those locations. The species also has a wide depth range, from the intertidal zonc down to 736 m (off Brazil: Herdman 1886).

Description

External Appearance: Colonies are cushionshaped to large investing shcets of translucent, firm, gelatinous test, through which patches of white - the capsules of saucer-shaped calcareous spicules up to 0.8 mm in diameter - can be detected. In one colony from South Australia (QM GH2382) small spheroidal spicules in the test surround the top of each of the capsules. Living colonies that are white, through pink to purple ("auricular purple": Ridgeway 1886) become glassy and transparent to pinkish-brown, and cloudy pink in alcohol preservative. Those grey-black, red-brown and 'dragon's blood red' (Ridgeway 1886) when living, are grey-greenish-black in preservative. Morphological differences are not associated with the differcnt colours (see Remarks, below).

Zooids are evenly spaced, in circles of 4 to 8 . with their atrial apertures in the centre of the circle. This arrangement is not easy to see in most contracted, preserved colonies, cspecially as the zooids usually arc withdrawn away from the

Fig. 67, Cystodytes dellachiajei: a, zooid partially relaxed (QM GH4413); b, zooid contracted, egg half way up abdomen (QM G9902); c, dorsal part of pharynx, showing last row of stigmata on each side turning posteriorly along the mid-dorsal line (QM GH4413); d, immature larvae (QM G5478); e, maturing larva (QM GH3826); f, g, large embryos before perforation of ampullary fold (WAM 165.75), h,i, larvae with 5 adhesive organs before and after perforation of ampullary fold (QM G9898). Scales: a, $0.5 \mathrm{~mm}, \mathbf{b}, \mathbf{c}, 0.25 \mathrm{~mm} ; \mathbf{d - i}, 0.1 \mathrm{~mm}$.
sulace into the calcarcous capsules in the middle to basal part of the test. The test has a smooth and even surlince, Pigment particles are concentrated in the middle layer around the capsules and between the crowded bladder cetls (which occur throughout the lirm (est). The branchiad and ath tal openings in the combts are f-loloed and do not protrude from the surface. The capsules are usuatly vestical, but uccasionally are oblique or even recumbent. In some of the colonies (c.g. QM (iH2382) the surface is depressed in the centre oll each circle ol zooid and lorms an incipient cloacal cavity into which the atrial apertures upen.

Paterent Sifuerure: Zooids are muscular. with numerous but line longitudinat bands Irom each of the siphons. Those that extend from the Fating sides of the sphons cooss one wother on the sides of the thoras there are at least 20 longitudinal bands from cach siphon. and also numerous lunc transvereme mustix. Sphincters are around the base of cach siphon. The longitudinal museles extend onto the abdonsen as 2 wide, strong bands, one on each side of the ventral mid-line. They terminate abruptly at the posterior end of the athdomen. A circular evagmation of the body wall around the top of the acsophageal neck contains the circular muscle emhedded in the test, The test is constricted at this point to form the narrow canal between the thorivic and abdominal cathics.

The large umber al muscles confers great flexibility in the ways these rooids contract, affecting the elitionships and relative length of parts of the body including tise siphons. The abdomen is espectially aflected. often being bent ul) at an angle to the thorax. and the two parallel limbs of the gut loop are often dinutured away from the parallel arrangement they display in the retaxed zooids. Zooids are up to 4 mm long when extended, Siphons (especially the atrial siphon) vary in length wath contraction. somethacs being particutarly long. Six lobes border cach aperture.

Twelve branchial tentacles arise from the edge of a thatrow musculat velum just anterior to and alternating with a circle of 12 more robust tentiacles of equal length. The neural gland has a simple. interiarly oriented operning fying in a narrow prebranchial arca. An extensive unperforated plaryngeal area exists hoth anterior and posterior to the stigmata. Dorsal languets are long and poonted. There are about 25 stigmata in each ol 4 rows. In one glassy, transparent colony and in a grey-black colony with relatively relaxed zooids, the fourth row ol stigmata was turned posterionly along each side of the dorsal simus. It was but
observed in alt colomies and is cithet s variable placmatmonn or wheured by contraction.

The gut loop is about the same lengut as the thoris. 'Thes smooth surlated shichestiapred stomach is at Icast halfway down the ahdomen. sthtough this is not appascot in any but claxed zooids. There is a short mid-intestine. hut no posternor stomath. She ecthan biginates in the descending limb oll the gut loop and the bulabiate snat opening is at the base of the atrial cavaty. Each tip of the amas has ahoun small papilate along its border.

The testis consists al a dome-xtaped manse enf up to is club shaped lolliches converging to the prosimad end uf the vas deferens in the cesute of the mure or less llat side of the dorme on the right side of the abdomen. Occasionally a laree ourm is on the regt whe ot the gut loup. When testis lotlicles are nor well developed, the vas deferens. loops posterionly and curves around the circumference of the asum, when present, helore extending anteriorly more or less paralled to the rectum. However, the vas belenens does mon derop posteriorly when the esstis lollicles are mature. as He duct is stretched over the gutside of the swollen follicles.

The larese ovam probathly is fentitised at the base of the oviduct. The embryo increases in size 45 it moves up ouward the top of the athlomen. protruding from the body wall as it goos. As it increases in sios the cembiye ith the broud pouch is separated from the upper part of the abdomen by an increasingly natrow consticiom. Oceasionally a second. hut much smatter emhryo in a secondary brood pouch, is separated from the primary one by a constriction (OM Gy89x).

In speciment from Heron 1. owa are in the abdomen in July and August. and embryos in April (OM (iH347K), Iuly (OM Cillis816), August (OM (iH9895 G139898) and October (OM GH43Ka), and alac in April at Likad 1. (QM G9905). 1n South Australia larvac are present in March (QM GH2382). Gonads are absent from some specimens collected in March and Seplember, allhough mature testes are in sumb collected in March and August. H is difficute to deduce the breeding pattern. despite the large number ol specimens available. In the tropics the te scem at Icast 2 breeding seasons, autumn and spring. The species is probably protandrous.

The larsa is large. the trunt from 0.75 mm it 1.2 min long and sometimes even decper. There are usually 3 adhesive organs in the antermor mid. line. In two specimens Iromn North West Reef. Capricorn Gruup. usse puple and ume cedsisto brown and another murple one Irom Wistan Reel
 sulsesme ngans. Utlace colunies al all colaturs have larvade with the usuad 3 adtocsive argans. These lanvae all have the characteristic ectodermall ring fromod the athesive urgans. They have 4 rows uf stigmata.

RBMarks. This speciey has alwavs been poorly described, aving mothe marked contraction ol the strong body muscles. The goonds are dillocult to narcolise, and in the newly recorded material from the Caprientr Giroup which wete stl nareotised (asenthol) bejore lixation, only one specimen (QM (ill441.3) thas the whole ronid. including the thuras extended. Herdman (1886) refers to 'small' and "not very nums rous" stigmata, and "exeeptionally long and numerous branchial tentacles (Herdman. 1886. D. 136). None of thest bhervalions: could be confirmed in the course of the present slady. Similarly, Vim Name (194.5, 17. 1.33) incorreelly believed emberyos were incubated in the atrial chvity, and the longltedinal museles spread out oucr the sides of abdomen in a thin layer.

The interpectation of the eolour variatoons in thes specees is a probleon. The 3 most comnonly oceuring fypes are those with glassy transparent lest, buth living and in peeservative, which usually lorm rather small eushons never more than 1 cm in diancter": those with a deep purple of 'cinnamon rulus' or 'dragons: hlond red' (Ridgeway ISB6) test which form rather larger cushions up tor 2 cm in dismelcr. and ate a cloudy brownish pink in preservative: and those that are grey-hlath both living and in preservative that sometimes form mare extensive coldules. Ifanever, intermediate forms do necur small light grey colonies, Iransparent piok ones, and extensive slatels of Furple colony. Variatons necur in the number ol lurvul adtesive organs and in the size and shape at the larval trunk, but these cannot be correbated with any classification based on the colour or sive of the colony. No onter vathtions in pooid marphology were observed. Fiurther. Whe dolferent colour variants asceur sympatricatly throughout the wide range set out atoove, they contht either be indicative of eyenetic diversity in this cosmopoblith species, or metaholic colours relating to hahitat ar diet or some enmbination of these tuebios
'The small xpheroidal spicules than 'lokinka (1950) used to separate CIspodyes philippinensis Herdman. 188 ghom the present spacien oceur atso in a specimen from Soulh Ausiratia (QM (1H2382).

Wiohout uny indication of how each is related
 Manniat ($\mathrm{F} ., 1988$) has desctibed 7 new specien
ul CMredytes Frum New Caledonia. These species have been determined on lhe hasse of colous. the presence or absence of systems, the connse of the proximal part of the vas delerens, the number of testis follieles, the numbers ol siphonal lohes, the poxition ol the hrood pouch, the length of the tarat trunk. and the number of larval adhesive urgans.

In the Australam material exammed in the course of the present shdy the same range in each ol these characters exists as that found in the New Coledonam speces combined. However, the same combinations have not heen found. Specmens Irum the Cupriconn Gioup. ons coloured eaffee apple` (Ridgeway IS86: QN G989) and Iwo purple (QM C9895 GH4384). have lrom 4 to 7 larval adhesive nrgams and the length of the larval trunk in undy a single colony ranges from 0.9 t1 1.2 mm . Dark volet colonies Irom south Australia (OM CH2382) have up to 20 male follicles. as fon sume from the Capricorn Group (i)M GH3471) coloured "dragons blood red" (Ridgeway Iksif). Cenerally, however. the number oll testis follicles appears wherease will the size and robustness of the colony. Ithe wire ol the testis, also adeets the curve of the proximal part of the vas delevens, which in some of the Austathath specimens is markedly looped, but runs a straight course when the testis follicles are expanded. Ins enurse is also affectert hy contristion of the soond and the maturation of the ovum?

Hic uther characten that F. Monniot (1988) has invoked 10 justily the erecton $n 1$ new speeves in this genus is the position ol the brood poucth.
 fors are said to brood their larvan at thoricic tevel. Whates in C. muoswa the brond pouch is said to be opposite the stomach. In fact the brond pouches of the first two spcciex appear to be in the usual position at the top of the ahdomen, and in the latler species (with its bood pouch level with the stomach) the embryo k at ath early slage of development. and no doubt will move antertorly before it completes it - as the embryos in the present collectuns. have heen observed to do. Munniot appears to have overlooked the fact that the ansl opening is at the poxterion end of the atrial cavity. A more anterior pusitom is an artefact cesulting from disturtion of sooids. Further, in blis genus no incipient hrood pouch develops independently of the embryo as in Holowidac. In Cysodyes the ege apparently is lertilised at the base of the usiduet, and increases im sire and maturity as it moves up the abdomen. It protiudes more and more from the body wall ins it daes so. until, at the top of the oviduct it

1s separated from the body wall by a sharp constriction - but never by a narrow stalk.

It is possible that the material on which Monniot ($F^{\circ} ., 1988$) erected these new species of Crstodytes was inadequate to identify invraspecitic variation - only one cotony of C. punctatus had larvac. find these dice at a early stage of development; the description of C. fuscus is based on a single colony, and that of C. mucosus on unly 3. 11 is not imporsihle that new, including genetic. diat: could in due course, establish an abjective basis on whichooseparate certain Pacific and Austration populations of Cissodyes from C. dellachatet. However, currently it is not possitie, Cistodeters hape Monniot and Monniot. 1987 has no characters juntiling its separation fown the present species.

(ienux D'olyciturella Michaelsen, 1924

Type species: Polveitorella marlat Michaclsen. 1924

Pedfitiorelles contains species with calcareous spicules in the test, zoods with more than 4 rows ol stigmatas a moderately longe oesophageal neck. gontads in the posterior end of the abdumen. 6lobed branchial and atriat apertures (each upening separately to the exteriort, outer longitudinal muscle bands that extend the whole length of the anoid and an inner layer of circular muscles. The test is firm, rigid and packed with bladder cells. Zonids are usually arranged in circles to lorm rudimentary systems as in Crislodyers and Eudistoma.

An unusual circular constrictor mosele is around the ouside of the pooid at the tup of the nesophageal reck as in Cystodytes. This muscle is completely embedded in the test which at this level partially separates the cavity in which the rooid is convained into an upper thoracic and a tower abdominal compartment. This constrictor muscle is almost completely separate from the pabid. its altachment to it being onty tenuous. ard often is found completely isolated from the rooid - left behind in the test when the rooid contracts. I he zooid musculature is strong and cooids are strungly contractile, often being found With the abdumen bent up against the thoras as in Cystodyes. On contraction, zooids withdruw Irom the surlace as in other geneta of Polycitoridae. Contracted zooids are often liound in the athdominal test compartment in the lower half of the colony (as they are in Chsodyms).

Michaclsen (1924) reported specific organs for the formation al spicules on citch side of the upper patl uf the oesoplageat neek These were not
detected in any of the spermens examined in the course of the present study. blthough in many an oval mass of crowded, small spicules is embedded in the test at each side of the posterior end at the endostyle. I liese may be spicule-lorming sites as are the lateral organs of the Didemnidate.

The genus resembles Polyifor in its mumerons rows of stigmata. position of the genads. separasely opering 6-lobed apertures, and 16. larvac with median adhesive organs and lateral ampullak. It is distinguished by the constrictur muscle and the calcareous spicules in the test. It he spicules restmble those of the Didemnidae although no direct phylogenetic relationship is implical.
A sungle embryo is brooded in a pouch that prajects from the top of the oesophageal neek. Lartac are known for polbcitusello coronatia Monman, 1488 ($-f^{3}$. moriac: Millar, 1963as) and Fo. opema/k n,sp. ($=1$ marme: Monmot, 1988) lhey hate a latge trunk. ectodermal ampullac. and vide adherine organs on relalively long atalks. The adhesive organs resemble those of Cistodites. the axiab protrusion constrictiod hasally worm a wide mushroom-shaped conical prolrusion resembling the axiai cone of Distapher rather than the flat-topped eylinder ol Polycirom alal Eudisroma.

The general shape and comeractibility of the ronisls, thein arrangement in circular systems. the firm. rigid test packed with bladder cells. the circula sbouminst muscle, the brooding of a single embryo at the lop of the abdomen, the capacity 10 form calcareous spicules, and the shape of the dat at adhesive organs, sugqest a relationship wath Cisudyas. Polyrionella is distinguished by its more numerous rows of stigmatia, znd the slate of the spicules which are stellate tather flos. mat and saucer-shaped

Presiously Holicitorella was known only Irom single colonies trom the Inclith and weatern Pacific wceans - the Gulf of Sites. South Atrica, the North I (New Zealand) and Port Phillip Bay (Victoilit). The 2 species described hetow are the unly unes lor which numerous specimens are now available. and these indwate a high degrec of untranpecific diversty. The known species appear closcly related.

The genus appears confined to the Indo-West Pactilic. In addition to the 2 Austrastian spectics. the loflowinge athe known, but have nol heers recorded from Australu:
Polvilurella hospimiolix (Suvigny. $18 / 6$) -
Liscoeltum howpillolum Savigny. From the Gutf al Siney revomhtes Poliviourella arimatis nose.
in the distribution of its spicules, but has fewer (6) rows of stigmata.

Polycitorella mariae Michaelsen, 1924 (rom the North 1. New Zealand is a stalked colony with debris attached to the stalk, without circular systems, and with small $(0.018$ to $0,025 \mathrm{~mm}$ diameter) spicules (ZMC 2.1.1918).
Polycilorella pallida Millar, 1962 from South Africa has a large, sessile colony. stellate spicules up to 0.06 mm diameter, but zooids are not arranged in systems.
Polycitorella péresi Plante and Vasseur, 1966 from Madagascar has brick-red colonies and spicules up to 0.03 mm with flat-ended rays.
Polycitorella semoensis Nistikawa, 1980 from Japan has unusual dise-shaped spicules as well as stellate ones.

Polycitorella coronaria Monniot, 1988
(Fig. 68. Plate 1de)
Polyctarella camonaria Monnot, 1988, p. 228. Polyciturella mariste: Millar, 1963a, p, 711.

Distribution

New Recorus: Western Australia (Northwest Cape, WAM 828.83 ;Shark Bay, WAM 8189.83 QM GH2/434. Abrothos. WAM 820.83 QM GH2143, WAM 824.83 $826.83 \quad 829.83 \quad 191.88 \quad 214 \quad 6.88 \quad 220.88 \quad 222.88 \quad 233.88$: Cervantes I, WAM 194.87; Cockburn Sound, WAM 842.83 QM GH2125. WAM 844.83 QM GH2I24). South Australia (Great Australian Bight, Ward I. QM GH924 GH2377. NTM E33; Pcarson I.. QM GH1313).

Previousiry Rfcorden. South Australia (Great Australian Bight - Monniot, F. 1988). Victoria (Port Phillip Millar 1963a).

The species is recorded from 3 to 190 m . It is common off southern and western Australia an far north as Northwest Cape, It has not yet been recorded from tropical waters of the western Pacific, althorgh, strangely, Monniot (F_{1}, 1988) described if (from a single colony from the Great Australian Bight) in a paper on ascidians from New Caledonia.

The numerous specimens examined in the present study has made it possible to more lully document the species; and to emphasise one of its malin charactensties
the regular cushton-shape of the larget speciment - which, despite the species name, was oot altogether spparent from the single crescentic colony on which the ariginal deseription was based. Sadly, despite the large number of specimens already available in Australian museums, the holoyype of this common Australian species is lodged in the Museum National d'Histoire Naturelle, Parix, having been donated by the US National Museum (see Monniol. F., 1988).

DESCRIPTION

Exifienal Apmarance: Most of the ceoorded colonies are massive circular, oval or long and slightly convex cushions up to 6 cm in maximum dimension and aboul 3 cm high. Large colonies
are fixed by the whale of the basal surface. When It is curved over rubble or ohtice substrates the whole colony becomes dome-shaped. Smaller colonies usually have a thick stalk, up to 3 cm long, with a slightly wider almost spherical to domeshaped head. The stalk is progressively lost as the colony increases in size, the head increasing in diameter and becoming flatter on the upper surface.

Colonies show considerable colour variation, which is affected by the distribution of dark spherical pigment cells and white calcareous spicules. The upper surface is white, grey of black with black or white patches where the apertures open to the surface. The lower half of the colony is always a dirty white colour. Pigment cells are present in the test of the upper surface, and sometimes in the thin layer that curves in to line each siphon. They are present also around the zooid compartments in the test. Pigment cells are also scattered sparsely in the internal test of the upper part of the colony, becoming more sparse toward the base. White calcareous spicules are always in the external test of the stalk and usually (but not always) in the basal hall of the colony. They are also in the internal test of the lower half of the colony around the abdominal parts of the zoads. Spicules are usually mixed with pigment cells in the surface layer of test over the upper part of the colony making it grey, The upper part of the colony is black if spicules are absent from the surface test. Spicules are in the surface test only around the apertures creating a pattern of white patches where the zooids open to the surface, Internally spicules are always absent from a thin layer of test that lines the eavities containing the zooids. Otherwise they are either throughout the internal test, only in patches or in a layer at the upper abdominal level, or only in the upper half of the colony. or absent altogether from the top half. Spicules are stellate, 0.04 to 0.08 mm diameter, with 5 to 7 conical rays in optical section. Sometimes nulberry-like spicules with rounded rays also occur. Oval masses of small, crowded spicules are sometimes visible at each side of the posterior end of the endostyle, embedded in the otherwise spicule-free layer of test that lines the cavities containing the zooids. Although no actual sac connected to the body wall of the zooid was detected, these oval masses of smail spicules probably are where spicules are generated.

Zoonds are always in evenly spaced circular systems of 7 to 10 zoojds, the 6 -lobed branchial apertures present in a wide outer circle with the 6 -lobed atrial apertures, on the end of relatively long siphons opering in a small tight inner circle

Fig. 68, Polycitorella coronaria: a, large colony showing arrangement of rooid openings in circles (WAM 844.83); b-d, outline of various colonies (WAM 818.83826 .83824 .83); \mathfrak{e}, a scction through a system showing zooids embedded in the test with atrial openings near centre of circle, and branchial openings in the outer circle (WAM 216.88): f, zooid showing long atrial siphon and oesophageal constrictor muscle (WAM 214.88): g, posterior end of thorax and contracted abdomen showing detail of testis and vas deferens (WAM 819.83): h, larva (QM GH1313). Scales: a, 2 cm ; b-d, $1 \mathrm{~cm} ; \mathbf{e}, \mathrm{f}, 1 \mathrm{~mm} ; \mathbf{g}, 0.5 \mathrm{~mm} ; \mathbf{h}, 0.2 \mathrm{~mm}$.
somelimes around a central depressatit. Ihe sentres al" loe systems are about 5 mm itway $/$ rom one another. the attial apertures are on long s. Whoms that reach onto the centre olt the carcle and. when open and extended. the anterioe attial lobes are longer than the postemor ones as phenomenom commonly observed where utrial siphons open in the centre of incopiont eareubar systems (see Curdistome)
lhe lest is lirm and, when specules are ahaten. it is glassy, mansparenl and packed with harder cells. Lobid. are ateonmmodated in large, rigid horurglass-sthaped compartments an the firmi cest. the thoracis and ahdominal section of each compartment stparatid by the lest cunstriction with its enstedded constrictor muscle.

From the condinon ol the rooids, apparemely. the whole zooid withdraus from the suthed on coratraction. The constictor muste :sometiones has sontencted around the top sit the abdomen helore the Usorax is withdrawn intu the abdominal chamber, and it is assumed that thes usually would oecur in lile. In some ol the material examined funweve, contration has been so tiolent that the rooid bas lust its attachment lo the muscile, and han éatopletely withdaran intu the alodominal compartment. In other specimens the contracted ennetritur muxcle has strangled the thorad at varibis points along its length afs it was berng whthdrawu iuto the athdominal compartment sometimes contraching around the lop ol the thoras and strangling the zooid behind the siphons ur uccastonally catching only the two siphons.
Inulinal Structure. Test comparbiments contaning the zooids are about one 102 cm in total length. It is isssumed that living forits: completely fill these spaces. The thoras and abdonien appear of almost equad length in theis extended condition. Contracted zooids are from 4 to xmint. The branchist apenture is tominal, and the atrial aperture extends ohllquely on the end of its long siphon into the centre ol the cireular systen of rooids. Externatly there are about 20 longitudinat muscles on each side of the thorax and these continut in wide batads along cath side of the abdomen. A liger al mater cormar muscles is present beneath the longitudinal ones on the thoras. Siphoncters surlound b"ath aptrture, and the constrictor muscle (described above) is th the top of the indomen.

Thelve long branchial tentacles alternate with shorter utes in a simgle carcle iat the base of the branchial siphom, although diflicult the conat. "ilhere are 10 to 20 rows ol 15 lo 30 atigmata. The number of stigmata appear to increase with
the size of the colony. fursall lingutes ant thiangular and present in the mid-line.

I lic ucsuphagus as vertical in partially relaxed pooids (WAM 214.8S) and apens intu the long stomach in the posterion half to one-thind of the abdomen The stomach wall is smouth extermally, and has papillations intemally. It is not folded. There is a short duadenal arca and a small rounded posterior stomach constricted from the reetum in tha pole of the gut loop.

When mature the feslos is large. consusting of a mass of numerous short follicles that project out from the foop of the gelt. The vas deferess arises from the center of the mass and loops, nut around the outaide of the anterion half of the mass before it extends anteriorly up the oesuphagesal neck to the atrat cavity. Only a single egg at a lime was found outside the male follicles.

South Australian specimens had mature gonads and larvae in March (OM GiHI313) and April. In the Western Australia material they were also mature in wome (but not itl) speccinens from Cervontes and Irom the \wedge brolhos collected in Marcle and Apoil. A large embiye is in the oviduct it the enp of the ahdomen in ane colony only (QM GH2377). larvae also are present in the brood pouch af the top of the oesophageal neck in the specimen from Port Phillip (Millar 1963: BMS5.11.20,48). The larval trunh is 1.1 in 12 mm long and has 4 pairs of lateral ampullac atternating with the 3 median adhesive argans it the anterion end.

Romabss: Fhas speces is variable in colour pattern (though not in colour) and in the shape of the colony. I'he colour is always some combinalion of hlack ind white - the former varying aceording to the distribution of the black pigment cells, and the latter according to the distribution of the calcarcous spicules. Variations in the shape of the culony depend an its size and the nature ol the substrate.

Polvosorella coromaria is readily distinguinhed Iron previously deserbed species by the arraneement of its 700 ids in circular systems emphasined by the colour patterns in the colonies. Turther, the spicules of the present species are latger than thase oh the New f.eatand species P. mariat, which hitve a maximum diameter of 0.025 mm . Spicules of P^{\prime}. pallita fromi South Africa are larger (! 14 0.0 kmm dameter) and are similar to those oll the present species. Millar (1063a) observed the test constriction hetween the abounimat and thoracic compartments, hut overlonked the moscle enihedded in it. Polveiforella mariae: Millat, 1963: from Port Phillip (Victoria) has spicules of O.06mon diameter, and athongh Millar observed
only mulberry-like spicules with rounded rays, the specimen prohably helongs to the present species. Similar apicules do oceur in specimens from Western Australia, although they are mixed with stellate ones. Larvae of the Victorian specimen are identical with those Irom South Ausiralia.

Polyciororella orientalis has smaller colonics, its largest spicules are less that half the size of those in the present species, zooids are only occasionally grouped into small systems, and the larval trunk is almost twice the size of that of the present species (sce F. Monniot 1988).

Polycitorelia orientalis n.sp.

(Fig. 69. Plate 14r, \mathbf{y})
Pehlytiorella mariac: Monmot. F.. 1988, p. 277.
Distrimimos
Tipi Lor ally Qucentland (Swain Reels, under ledec 8m, AMP1 133, coll. N. Coleman, 9.7.74, holotype QM G9477, paratype QM GH4420; coli. I. Watson 10. 10.74. paratype QM (iH4420).

Pirther Ricord. Quecnsland (Heron I, specimen destroyed for analysis: Fredrickaon 1978: Coral Sua Monniot. F. 1988).

Dencriftions

Exitral Abrearavci The specimens have relatively small (about Ion diameter) rounded heads on a short stalk of slighty less diameter, The whole colony is 1 to 2.5 cm high. A larger colony (QM GH4420) of 2 cm diameter is a llat cushion without a stalk. Zonids open onto the upper surface of the head on well separated shallow, oval prominences. Some are grouped into 2- or 3-zooid systems, their atrial apertures adjacent to one another. The zooids converge into the centre of the head and down into the statk. almost to the hase.

In life colonies are cream, pale yellow or green. but when preserved. they always are cream.

Calcareous spicules are in the surface layer of test of the head and the stalk. Internally. they are only sparse at thoracic level and in the stalk they form a sleath around each abdomen. They are absent from the test between these abdominal sheaths. Spicules are 0.025 to 0.035 mm in diameter. They vary from stellate, with 5 to 15 pointed or flat-ended rays in optical scction, to mulberry-like spicules with rounded rays, and spherical ones made of many thin radially arranged rods.

Ivtirnal Srructhre. Contracted zooids are about 5 mm long. The apertures are 6 -lohed, both on short siphons at the anterior end of the body. In addition to sphincters around the apertures, the thoracic musculature consists of longitudinal bands overlying a laser of circular muscles.

Fhe 69, Polycirorella orientalas n.sp. (holotype QM G9477): a, colony; b, pooid showing circular muscle embedded in the test around top of oesophagus: c. stellate spicules. Scales: a. $2 \mathrm{~mm}, \mathrm{~h}, 1 \mathrm{~mm}, \mathrm{c}_{0} 0,02 \mathrm{~mm}$.

Longitudinal bands cxtend along the abdomen in a pair of ventral muscles. The constrictor muscle is embedded in the test around the upper part of the oesophageal neck. There are 10 rows of about 20 long stigmata.

The thorax and abdomen may be of equal length in relaxed zooids. However, in these variously contracted specimens the abdomen is sometimes shorter and sometimes longer than the thorax. The stomach is in the posterior third of the abdomen. It has fine longitudinal glandular ridges in the internal lining, but it is not folded. A mass of crowded, short, pyriform, male follicles is in the gut loop. No eggs were seen in the newly recorded material.

Larvae of this species were in specimens from the Coral Sea (Monniot, F. 1988). The larval trunk is 1.9 mm long, and the tail barely reaches to its anterior end. There are 4 pairs of lateral ampullae alternating with the 3 adhesivc organs in the anterior mid-line, an ocellus and otolith.

Remarks: Polycitorella orientalis is distinguished from P. coronaria by its small colonies, its colour (lacking the dark pigment of the latter species), its small systems that occur only occasionally, its relatively small spicules with slightly longer arms and its appreciably longer larval trunk. Although the now destroyed specimen from Heron I. had a preponderance of mulberry-like spicules like the specimen of P. coronaria from Port Phillip Bay (> P. mariae: Millar 1963a), the spicules in the Heron 1. colony were the same size as those of the present species, and the colony form and pigmentation were also similar.

Monniot (F. 1988) believed P. mariae: Millar 1963a (from Port Phillip Bay - not the Philippines) was a synonym of her specimen from Chesterfield is in the Coral Sea. However, the spicules of the Vietorian specimens are larger and the larval trunk is shorter $(1.2 \mathrm{~mm})$ than that of the Chesterfield is specimen (1.9 mm). The Chesterfield is specimen appears conspecific with the present species, having similar yellow colonies, and small spicules. F. Monniot (1988) also thought that the Chesterfield Is specimen was a synonym of the New Zealand P. mariae Michaelsen (ZMC 2.1.1918). However, although the New Zealand species has a similarly stalked colony, its stalk is longer and covered with adherent foreign particles, its spicules are smaller than those of the present species and they are all stellate with conical rays.
Polycitorella pallida from South Africa like P. coronaria forms larger colonies and has larger spicules.

Genus Eudistoma Caullery, 1909
Type species: Distoma rubrum Savigny, 1816.
The genus has small, characteristically polycitorid zooids with a long oesophageal neck, and gonads and stomach at the posterior end of the abdomen. The atrial and branchial apertures are 6-lobed. Longitudinal muscle bands on the thorax extend in one or 2 bands along each side of the abdomen. An inner layer of circular muscle lies beneath the longitudinal ones on the thorax. There are 3 rows of stigmata. The anterior row contains more stigmata than the other two, and its dorsal end usually curves anteriorly along each side of the mid-dorsal line. The stomach is always small, shield-shaped and smooth. A long duodenal area is posterior to the stomach, and usually an oval posterior stomach at the distal end of the descending limb of the gut loop. The gastrointestinal gland is well developed. The anus opens between the second and third rows of stigmata. As in other genera of the Polycitoridae, zooids withdraw into the base of the colony when disturbed.
With rare exceptions (when it occurs in the distal part of the oviduct), fertilisation takes place in the atrial cavity. Larvae are small, with a larval trunk only occasionally more than 1 mm long. They have 3 stalked adhesive organs in the vertical mid-line anteriorly. A fairly wide tuft of columnar cells project from the centre of a deep ectodermal cup. Ectodermal ampullae usually alternate with the adhesive organs and often also are along each side of the anterior end of the trunk. Ectodermal vesicles, originating as terminal expansions of thread like extensions from ectodermal cells, are often present in the larval test (see Annotated Gilossary: larvae).

Sand and other foreign particles including plant cells are often embedded in the test, sometimes confincd to the central or basal part of the colony, but sometimes throughout the test. 1 n most species faecal pellets are in the test. This may result from the contraction and withdrawal of zooids from the surface causing ejection of faeces from the short thorax. Several species also have unusually large spherical cells embedded in the test. Michaelsen (1930) belicved these symbionts. although this is established only for E. amplum. The test is often brightly pigmented and usually opaque in living specimens.

Zooids of most species are in rudimentary circular systems with the atrial apertures in the centre of the circle. In these species the atrial siphons are long. When systems are absent the atrial siphons are shorter and more or less the
TABLE 8. Summary of Characters of Species of Eldistoua Recorded from Australia

Species	${ }^{1}$ Biogeographic description	${ }^{2}$ Range around Australia	Colony shape	Colonial systems	Test colour	Sand in test	${ }^{3}$ Pigment or vesicular cells in test (max. diameter mm)	${ }^{4}$ Larvae (no. incubating) trunk length (mm)	Other
E. laysani	WP,tr	Botany Bay -Sarina	numerous stalked conical or rope-like lobes	none	whitish -blue	none	-	$\begin{gathered} { }^{(8)} \\ 0.4-0.5 \end{gathered}$	
E. elongatum	A,st	Jervis Bay -Hervey Bay	"	"	"	"		$\begin{aligned} & \text { (8) } \\ & 0.5 \end{aligned}$	no lateral larval ampullae
E. superlatum n .sp.	A,tr	Dampier Arch.Abrolhos	"	"	pink?	"	-	-	colony massive: zooids with a long vascular stolon
E. globosum	A,tr	Abrolhos- Margaret River; Heron Is	almost sessile spherical heads	"	blackish green	absent only from outer test on head	pigment cells (0.04) beneath surface	$\begin{aligned} & \text { (1) } \\ & 1.7 \end{aligned}$	-
E. glaucum	WP, tr	Heron 1. Lizard 1.	"	zooids in circles	opaque green	in stalk only sparse	minute pigment cells throughout	$\begin{aligned} & \text { (2) } \\ & 1.2 \end{aligned}$	moderately long vascular stolon; preservative stains green
E. Lumidum n.sp.	I,tr	Gulf of Carpentaria	"	?	?	none	?	$\begin{aligned} & \text { (4) } \\ & 0.5 \end{aligned}$	pointed lateral larval ampullae with parietal branches
E. malum n.sp.	A,tr	Capricorn Gp	"	"	yellow, brown, purple	"	minute pigment cells (0.01) throughout	$\begin{gathered} (4) \\ 0.75 \end{gathered}$	sand on stalk
E. gilboviride	WP,tr	Heron 1. -Lizard I.	wedge- shaped lobes	"	green with yellow	"	minute pigment cells (0.02) crowded in surface	$\begin{aligned} & \text { (2) } \\ & 0.9 \end{aligned}$	leaf-shaped larval ampullae
E. aureum n.sp.	A,te	South Australia	single stalked lobe	"	yellow	"	?	?	

TABLE 8. Summary of Characters of Species of Eudistoma Recorded from Australia (continued)

Species	Biogeographic description	${ }^{2}$ Range around Australia	Colony shape	Colonial systems	Test colour	Sand in test	${ }^{3}$ Pigment or vesicular cells in test (max. diameter mm)	${ }^{4}$ Larvae (no. incubating) trunk length (mm)	Other
E. purpureum $\mathrm{n} . \mathrm{sp}$.	A,tr	Capricorn Gp	sessile cushion	*	opaque purple	in basal test only, sparse	"	$\begin{aligned} & (2) \\ & 1.5 \end{aligned}$	bract-like median larval ampullae
E. eboreum n.sp.	A,tr	Lizard I.	"	"	whitish	"	brown-orange pigment cells (0.01) throughout	(1) embryo only 1.0	fusiform and branched dendritic cells throughout
E. muscosum nom. nov.	WP	Heron I.- Lizard Is.	"	"	olivebrown	"	tan pigment cells (0.04) crowded at mid-level, pigment cells (0.03)	$\begin{aligned} & (2) \\ & 1.0 \end{aligned}$	larval trunk spherical; preservative stains red-brown
E. pratulum n.sp.	A,tr	Heron 1.	"	"	$\begin{aligned} & \text { cream } \\ & \text {-sage } \\ & \text { green } \end{aligned}$	none	brown pigment cells (0.03) throughout	$\begin{aligned} & \text { (1) } \\ & \text { embryo only } \\ & 0.75 \end{aligned}$	test firm; surface rough; z.ooids green
E. anaematum n.sp.	A,tr	Capricorn Gp	"	*	pink, brown, olive	basal half of colony only	minute pigment cells (0.01) sparse	embryo only 0.8 in oviduct	-
E. incubitum n.sp.	A,tr	Capricorn Gp	small stalked mushroom- like	"	white	none	vesicles (0.05) evenly spaced in surface	$\begin{gathered} \quad(4) \\ 0.6 \\ \text { in oviduct } \end{gathered}$	vesicles at surface of larval test
E. maculosum n.sp.	A,te	Pt. PeronJervis Bay	thick sheet	"	2 toned	at mid-level only	brown tan pigment cells in patches in surface	$\begin{aligned} & \text { (1) } \\ & 0.9 \end{aligned}$	bract like larval ampullae
E. tigrum n.sp.	WP,tr	Heron I. -Abrolhos	"	"	"	sparse basally	dark pigment cells in surface surround translucent patches	$\begin{gathered} (3) \\ 0.75 \end{gathered}$	median larval ampullae only
E. amplum	WP,tr	Heron I.Lizard I.	"	"	colourless	variable	red and green symbionts (0.3)	$\begin{aligned} & (2) \\ & 1.0 \end{aligned}$	-

E. gracilum n.sp.	A,tr	Heron I.	thin sheet	?	red	none	minute pigments cells throughout	$\begin{aligned} & \text { (1) } \\ & 0.6 \end{aligned}$	test very soft; zooids minute
E. constrictum n.sp.	A,te	South Australia	rounded cushions	none	colourless	sand throughout	-	$\begin{aligned} & \text { (4) } \\ & 1.0 \end{aligned}$	constricted around oesophagus
E. microlarvum n.sp.	A,st	Moreton Bay -Hervey Bay	thick sheets upper surface lobed	"	colourless	crowded at mid-level	-	$\begin{aligned} & \text { (1) } \\ & 0.4 \end{aligned}$	z.ooids minute thread-like
E. sabulosum n.sp.	A,te	Gt Australian Bight-Western Port	"	zooids in circles	"	sand throughout		$\begin{aligned} & (6) \\ & 0.5 \end{aligned}$	lateral ampullae only
E. ovatum	WP, tr	Hervey Bay Cape Boileau	thick sheets	"	"	"	-	$\begin{aligned} & \text { (5) } \\ & 0.6 \end{aligned}$	branched lateral ampullae
E. pyriforme	WP, tr	Bundaberg -Torres St	wedge- shaped to rounded lobes	zooids in single circle/lobe	"	"			common basal test
E. bulbalum n.sp.	A,te	New South Wales	cylindrical lobes	"	?	"	-	-	base of colony produced into roots
E. angolanum	IWP.tr	Lizard I.Cape Boileau	irregular cushions or sheets	cloacal cavity present	red	crowded throughout	-	$\begin{aligned} & \text { (3) } \\ & 1.0 \end{aligned}$	larvae with 3 rows of lateral ampulla
E. carnosum n.sp.	I,tr	Abrolhos- Rottnest I.	thick sheets	"	?	absent from surface of systems	red symbionts? (0.5)	$\begin{aligned} & \text { (1) } \\ & 1.5 \end{aligned}$	"
E. reginum n.sp.	A,tr	Capricorn Gp	thick sheets		red	"	red symbionts? (0.3)	$\begin{aligned} & \text { (3) } \\ & 1.0 \end{aligned}$	colony hard

[^5]same length as the branchial siphons. Both siphons usually have a distinct sphincter muscle.

Eudistoma is distinguished from Sigillina which also has only 3 rows of stigmata - by the long oesophageal neck, much smaller zooids, absence of a brood pouch, smaller embryos incubating in the atrial cavity, and absence of the epicardial extension in the vascular stolon. The structure ol the gut with its long duodenal region, oval posterior stomach and small, smooth stomach. is particularly stable throughout Eudistoma and constitutes a further reliable distinguishing character. Although the larval adhesive organs have a more or less flat-topped central protrusion of columnar cells, it is always cylindrical and never forms a long ridge or platform as it does in Sigillina.

The genus is an homogenous one, and zooids are difficult to distinguish from one another. They are invariably found contracted, causing various distortions of the gut and abdomen. Hastings (1931) observed that kinks in the gut, used by many authors to distinguish species, are of little value as taxonomic characters. While the oesophagus becomes wrinkled on contraction, the rectum, containing faecal pellets, is variously kinked and sometimes looped in contracted zooids of all species. Characteristics of the colony - its shape, colour and test inclusions - afford more reliahle characters for species identification than the zooids themselves. Unfortunately the colour is lost in preserved material and test inclusions have not always bcen recorded. The difficulties encountered in eharacterising Eudistoma spp. cannot be over-emphasised, but to some extent at least, these will be alleviated if records are kept of the colour and general appearance of living colonies.

In a few cases species share conspicuous characters that suggest a phylogenetic relationship. Thus Eudistoma angolanum, E. carnosum n.sp., E. reginum n.sp., with E. magalhaensis from the Magellanic region. form a species group characterised by the localisation of pigment in pockets in the larval trunk haemocoele, and the formation of distinct, albeit rudimentary, cloacal cavities. Also E. globosum, E. laysani and E. elongata are possibly related, colonies all having stalked lobes, and zooids being crowded and not in systems. Other species groups have not been identified.

Eudistoma has not been recorded from the Antarctic, only one species - E. vitreum (Sars, 1851) - is known from boreal waters (see Millar, 1966b), and the genus is most diverse in tropical waters. Species of this genus are commonly
encountered around the Australian continent. The 27 species discussed below include 17 new to science of which 11 are tropical. Six indigenous species are known only from temperate waters. Although a number of the Australian species resemble some recorded from Africa, they appear distinct. Sluiter $(1909,1919)$ recorded 12 species from the lndo-Pacific that can be assigned to this genus with confidence. However, in the following 80 years only 2 of these were recorded again. although a further 5 species were described from the area. Difficulties in distinguishing species from one another when only preserved material is available may have caused this apparent lack of diversity in the previously recorded material.

Key to the Spfcifs of Eudistoma RECORDED HROM Austral.iA

1. Systems present
Systems not present 23
2. Rudimentary cloacal cavity present 3
Rudimentary cloacal cavity not present ... 5
3. Sand absent from surface test aroundsystems.4Sand present throughoutE. angolanum
4. Cloacal apertures on conical prominences.. E. carnosum n.sp.
Cloacal apertures not on conical prominences E. reginum n.sp.
5. Colonies divided into numerous lobes on common base 6
Colonies not divided into numerous lobes on common base 8
6. Sand crowded throughout test .
E. pyriforme

Sand not crowded throughout test 7
7. Colony lobes top-shaped..... E. gilboviride Colony lobes rounded, sessile

> E. tumidum n.sp
8. Large (up to 0.3 mm) symbiotic plant cells present in test E. amplum Large symbiotic plant cells not present in test . 9
9. Sand crowded throughout test 10 Sand not crowded throughout test 12
10. Colonies upright cylinders
E. bulbatum n.sp.

Colonies not upright cylinders........... Il
11. Sand present around apertures of zooids: tropical species E. ovatum Sand not present around apcrtures of zooids: temperate species..... E. sabulosum n.sp.
12. Colony with two-toned pattern in surface test . 13
Colony without two-toned pattern in surface test .. 14
13. Larval trunk 0.9 mm long; temperate species maculosum n.sp. Larval trunk 0.6 mm long; tropical speeies. . E. tigrum n.sp.
14. Fusiform and dentritic pigment cells present. E. eboreuml n.sp. Fusiform and dendritic pigment cells not present.... 15
15. Surface test speckled with evenly spaccd vesicles (0.05 mm diameter) E. incubituin n.sp. Surface test not speckled with evenly spaced vesicles16
16. Colonies extensive investing sheets 17 Colonies not extensive investing sheets . . 18
17. Test soft and mucus-like . . E. gracilum n.sp. Test not soft and mucus-like E. pratulum n.sp.
18. Test bright green both living and in prescrvative E. glaucum Test not bright green either living or in preservative. 19
19. Test bright purple in life; zooids greenishblack in preservative
. E. purpureum n.sp.
Test not bright purple in life; zooids not greenish black in preservative 20
20. Colonics with sand embedded in stalk ... 21 Colonies without sand embedded in stalk 22
21. Layer of sand beneath surface test; zooids reddish-brown in prescrvative
.......... E. aureum n.sp.
No layer of sand beneath surface test; zooids not reddish-brown in preservative E. malum n.sp.
22. Surface test with conspicuous white suspension in preservative; zooids not reddishbrown in preservative
. E. anaematum n.sp.
Surface test without conspicuous white suspension in preservative; zooids reddishbrown in preservative \qquad E. muscosum nom, nov.
23. Colonies stalked . 24

Colonies not stalked 26
24. Sand present both in stalk and in centre of head E. globosum
Sand not present either in stalk or in centre of head. 25
25. Head long and cylindrical E. elongatum Head not long and cylindrical ...E. Iaysani
26. Colony with embedded sand 27

Colony without embedded sand
E. superlatum n.sp.
27. Sand absent from surface test over anterior ends of zooidsE. constricturn n.sp.

Sand not absent from surface test over anterior ends of zooids
.E. microlarvum n.sp.
The following species, previously described from the western Pacific and the Indonesian region, have not yet been recorded from Australia:
Eudisioma fragum F. Monniot, 1988 from New
Caledonia has a red test, embedded sand, and a larva with lateral ampullae similar to those of E. amplum. However. symbiotic cells have not been recorded, and the zooids are not arranged in circles.
Eudistoma glabrum (Sluiter. 1919) has sessile, cushion-like colonies with a convex upper surface about 2 cm high in the centre. Little sand is embedded in the upper layer of test and elsewhere the test contains only crowded faecal pellets. Zooids are in circular systems. Branchial and atrial siphons are both long, and the basal part of the branchial siphon has a wide band of numerous branchial tentacles in at least 7 rows. About 25 stigmata are in the anterior row, which extends forward along each side of the mid-dorsal line. Spherical pigments cells of about 0.01 mm diameter are scattered evenly, but sparsely, throughout the test. It is distinguished from E. malum by its long branchial siphon and wide band of branchial tentacles (ZMA TU1281 lectotype).
Euclistona laysani: Tokioka, 1967a, from the Palau is has a similar, although less regular colony than E. loealensis Millar, and is further distinguished by its median rather than paired larval ectodermal ampullae that alternate with the median adhesive organs.
Eudistoma loricatum (Sluiter, 1909) from Indonesia has a colony similar to E. bulbatum n.sp. However in E. loricatum the lobes of the colony are smaller, devoid of sand over the upper surface and are attached to common basal test (ZMA TU1267 lectotype).
Eudistoma miniacum (Sluiter, 1909) from Indonesia has flat-topped lobes of variable diameter arising from a common base, larvac with a long cigar-shaped trunk (1.2 mm long) and 4 median ectodermal ampullae alternating with the adhesive organs and zooids in conspicuous circular systems opening on the upper surface of the lobe. The lobes have a distinctive appearance, with a network of pink pigment cells in the surface test (ZMA TUI268 lectotype).
Eudistoma muhiperforaum (Sluiter, 1909) forms hard, sand-impregnated, bluish-red sheets with a superficial resemblance to colonies of E.
angulamim. The sand is crowded in the lower half of the colony and sparse elsewhere. Zooids are large and pink in preservative, not crowded. mot arranged in circular systems, and lack Iong atrial siphons (ZMA TU809.1-. 2 syntypes), Eudistoma sp, aff, angolanum: Tokioka 1967a from the Palau Is may be conspecific,
Eudistoma rubrum Tokioka, 1954a from the Tokara Is and Fiji (Kout 1981) his almost spherical, transparent heads with reddishorange zooids. The spherical uransparent heads are unusual - resembling Pulycitar more closely than Eudistoma spp.
Eudistama segmentatum (Sluiter, 1909) from Indonesia forms upright, cylindrical or corncal lobes arising from a common basal test mass. The tops of some of the lobes of the lectotype appear regenerating. thus accounting for variations in the shape of the zooid-bearing part. Zooids in these regenerating colonies are apparently non-functional juveniles, as they do not open to the exterior and no latecal material is present in the gut. The species is distinguished From E. loricatum and E. laysani by its more mumerous zooids and taller colonies. Constriclions in the lest recorded for this species were not distinguishable on cxamination of the lectotype (ZMA TU1268 lectotype).
Eudistona stellatum Monniot, 1988 Prom New Calcdonia apparently resembles E. angolanum in the Fied. However, the latter species has a laryis with more numerous ampullae, The fold in the stomach described for this species does not appear to have a homologue in the genus. The larva is like that of F. gilboviride.
Eudistoma oealensis Millar. 1975 from Indonesia has rather long cylindrical lohes arising from a common basal test mass, and a long latval trunk of 1.0 is 1.3 mm . These colonies resemble some from Vietnam assigned to E, laysani by Tokioka (1967b) which have the same parlially subdivided, pared larval ectodermal ampullac and the same posterior extension of the ventral ampulla is Millar's specimens.
Eudistoma tokarae Tokioka, 1954a from the Tokara is has pooids opening on the upper surlace of small upright lobes, and faecal pellets and abdomina in the stalk. Minute dark greenish pigment spots are in the test, and zooids. Tokioka and Nishikawa (1975) discussed the possibility that this species represents juvenile colonies of E. glaweum. However, both the poods and colonies, including the pigmentation, are different from those of E. glaucum. Alihough the colones are more like E, laysani and $E_{\text {. Incubirum n.sp. the pigmentation is }}$
different from both, and E. tolsarac appears a good species, distinguished from others by its dark pigment cells in the test and zooids.
The following species with 3 rows of stigmata, Which were assigned to Polycilor by Sluiter (1909). are not members of Eudistoma: P. violaccus (ZMA TU 814 bolotype $<$ Trididennum sp.). P. signiferus (ZMA.TU808. 1 lectotype s Sigillina signifera), P. coalitus (/typodistoma decratum), and P ianthmus (< Exostoman.gen. vanthinum). The last three spectes are discussed in this work.

Eudistoma amplum (Sluiter, 1909)

(Fig. 70. Plate 15a)
Polscitor uniphos Stuter, 1409, p, 21, Not Harmmeyer, 1919. p. 105 (see Hastings. 1931). Ezullssmena amplus: Tokioka, 1950. p. 118
Eudistoma umplumr: Tokioka, 1967s, p. 121, Millar, 1975. p. 219 (part, not specimen from Tocal with cloacal cavity < "' E. regirtum n.sp.).
Polycitor discolar Sluiket, 1409, p. 17.
Distribution
New Recuros: Quecnsland (Capricorn Group, QM C119367G19778 8 GH374 GH1824 GH1352 GH1824 GH1831-4 GH2238. ©H3817 GH4421-4 GH4432 GH4442 GH4470 । GH44779 GH4500-4 GH4512-7 GH4562; Giren 1., QM G12501: Lizard I.. QM GH46089).

Previousla Rbeomblo: Palau 1s. (Tokioka 1950 1967a). Indonesia (Z.MA TLI781 type Polychor amplus Slwiter. 7909; ZMA TU785, 1-3 syntypes Polycitor discoter Sluiter. 1909). Philippines (Millar 1975)

Discretrion

External Appearance: The colony forms robust flat-topped cushions to sheets up to 14 cm or more in maximum dimension and about 1.5 cm thick, with rounded borders. The surface is smooth and often shiny. Although sand grains are present. and sometimes crowded in the test, they are usually absent from the upper surface except between the atrial and branchial openings of each zooid so that the sand forms a star-shaped or daisy-like pattern that emphasises the arrangement of zooids in circular systems. Sand grains in the surface, espectally around the zooids, are smaller than those in the remainder of the test. Systems are about 0.5 em in diameter with the atrial apertures 1oward the centre of each circle and the branchial apertures around the periphery. The surlace test is often (but not always) depressed in the centre of the circle and the atrial openings are around the border of this depression.

The test itself is glassy and colourless, but this is obscured by the testinclusions. Large, variously sized (up to 0.3 mm in diameter) spherical vesicles in the test are usually (but not always) crowded in the surface layer and become less crowded

Fig 70, Eudistoma amplum: a, branchial (outer circle) and atrial (inner circle) openings of a single rudimentary system on surface of colony (QM GH2238): b, embedded green cells clustering around a branchial aperture (QM Gll978); c, zooid showing thoracic muscles and vesicles associated with the gastro-intestinal gland clustered around the gut (QM GH352); d. contracted zooid with larva in atrial cavity (QM Gl1937): e, larva (QM G11937). Scales: a, Imm; b, $0.25 \mathrm{~mm} ; \mathbf{c}, \mathbf{d}, 0.5 \mathrm{~mm} ;$ e, 0.2 mm .
toward the base. Embedded sand grains become more crowded toward the base. The spherical vesicles are eukaryotic algal cells. They are usually red and shiny in the living spccimens, causing the maroon to "aster purple' (Ridgeway 1886) and brown of the colony. This sometimes shades to brownish-ycllow ('gallstone ycllow': Ridgcway 1886) when sand is near the surface. Howcver, green and red plant cells and sand are often distributed fairly evenly through the whole
thickness of the colony. In preservative vesicles are cream or slightly cloudy-greenish and translucent. In one specimen (QM GH4555) the green cells are cysts containing numerous small spheres (see E. vitiatum Kott, 1981).

This species very often has Prochloron cclls on the surface of the colony (Kott et al. 1984). They are only loosely attached and can be easily wiped off.

Intirnal Structure: Living zooids are yellow-orange. They arc robust, but when contracted are only about 5 mm long. The atrial siphon is up to 3 times the length of the branchial siphon. The circular sphincters around each aperture are not especially strong. Up to 20 longitudinal muscle bands on each side of the thorax often join one another to form half that number of bands. They are relatively fine, well separated from one another, and sometimes are in 3 or 4 groups on the sidcs of the thorax. The circular muscles are more numerous. About 22 stigmata in each row are generally long, becoming shorter ventrally. Dorsal languets are to the left of the mid-dorsal line. About 24 branchial tentacles of various sizes are apparently in 3 circles, although this is difficult to sce.

The small, smooth stomach is near the postcrior end of the abdomen. Therc is a relatively long, narrow duodenal area and a long mid-intestine that curves around in the pole of the gut loop before entering the rectum. The posterior stomach (in the mid-intestine) is sometimes rather obscure. A band of thin-walled spherical, elongate or irregular terminal vesicles of the gastric gland surround a section of the gut opposite the stomach. A kink occurs in the proximal part of the rectum just posterior to the stomach in these contracted specimens.

Gonads are maturing in specimens collected in September but not in January, February or July. Colonies collected in July are in an active vegetative phase. One or 2 large larvae are in the atrial cavity of specimens collected from the Capricorn Group in July to September (QM Gl1936 7 Gll971). The larval trunk is almost 1 mm long, and the tail winds a little more than half way around it. The adhesive organs consist of a small cone of adhesive cells surrounded by a shallow epidermal cup on a long narrow stalk. A row of 4 lateral ampullae, bent at right angles, is on cach side of the median row of adhesive organs. A median dorsal ampulla lies between the lateral ones, but median ampullae werc not detected between the adhesive organs.

Remarks: The species is distinguished by the spherical plant cells and sand embedded in the
colourless test (the collour being conferred by the embedded material). moderately conspicusus circular systems. thick ath often evensive sheetlthe collonies, and large larvac. Museles and the kimh in the proximal part of the rectum resemhle Libdinoma Plriforme Herdman. 1886 (see Hastings 1931). However, tolomies of the latler species have sand grains crowded in the test. consist of pyriform lohes, and rovids have a better defined posterior stomach
feulisuman vinutum R OH, 1481 contain the same test inclusions as the present species but is diseinguished by its melatively small uprigh lohes with is common hasal membrame.

The symtype spccimetrs of Pollemor disealor Sluiter. 1909 (ZMA TU785.1 . 3) have been examined and cannot be distinguished from the present species. Although the symbiotic plant cells were reported to reach 0.8 nim, none ol that size Was Jound. One of the colonies (7.MA IU785.1) has plant cells 100.25 mm in diameter, and in the others the cells are J). 1 mm 10.0 .15 mm , although in all specimens there is a wide range its their diameter. Thus, they lall well withon the range recorded for E. amplum. Zooids of P, discolor also are identical with those ol the present species. Zooids with the low number of stymata (6 or 7) recorded by Slutter were not lound in the type material.

Ludistoma antacmatum n.sp.

(Fig. 7la)

 holetype OW GH\$6ll: Heruld 1. rect. north. woll. PK 7.11.55, paralypes QM (iHantu GH461? 3).

Fikblle Rumeras Quecnsland Capticom Croup. QM G17954 7 Gll4613 $26 ; 1$ imon Rect. QM (illd4sf).

Desckurime

Extreval Applaravor: Colomes lorm circular to irregular hat-lopped cushions up to 20 m thich and (eem diameter (QM GH4480), usually fixed hy the whole of the lower surface. The upper surtace of the colony is bmouth, and openings of zooids are difficult 10 detect in presersed material. Zooids are arranged in circular systems of up in 5. The outer circle of branchial openinges is ahout 3 mm in diameter.

In life, colonies are shades ol pinkish-beige, rose, to olive and brown (Ridgew ay 1886 : "salmom-huff, "tawny". "whraceus rulus'. 'hrick-red". "Inadderbrown', "hay". "maronn', "Iawny-olive', 'olive"). In several colonies (QM (iH4612 and GH4024) the colour shades trom briek red at one end 10 olive at the other. When preserved the test is opaque

White with a bomogenous white suspension in the surlate. Bencath the surface the lest is cloudywhite and translucent with some misute brown pigment particies in the surfate and wound the fooids, although these disappat with long term preservation. Sume sand is embedded in the batal part of the culon! and in some specimens penetrates up into the centre, Sind is absent from the surface test. Faecal pellets are throughout. Latre and consprouous patehe of pale brown to dark greenish-brown pigmented cells are in the base of the colony. The tev is anft. In preservative. fonids are pinkish-beige to beige, with 気ecks of hrowush pigment on the hody wall when lirst preserved. The preservative stains a greenish yellow.
 fomm long when parlially relased but less than hall that length when contracted. Well developed circular muscles are around each siphon, and the atrial siphons are long at least 3 times the length of the branchial siphens. A natrow band ol 3 rows of branchial tentacles is in tle hase ol the branchial siphon. I welve 2020 longitudinal muscle bands are on the thorax. and at lease 30 transverse ones. Longitudinal museles continue in a wide band on each side of the abdomen. The hranchial sac has ahout 25 stigmata per row, and the lirst ruw turns anteriorly along cach side of the mid-dorsal line.
the stomach, long duodenal area. posterior stumatch, and well developed tubules al the gastroinlestinall gland are in the posterior end of the abdomen. A hemisplaceical elump of mature male follickes is in the gut loop in specimens collected in the Capricorn Group in Vovember (QM G144619).

Large (up tu 0.8 mm) embryos project out from the rop of the oviducts of contructed zooids in colonies collected in October (QM GH4623), and Nosember (QM GH4619). However, mature larvat are not in any of the gvailathe colonies.

Rewarks: Emdisfomamahum 11.sp. has the same unaque suspension in the surtace test as the present apecies and the eestis follicles are in a similar circular clump. However F.o malem has a sandy stalk and mushroom-like colonis while those of the present species are flattened and sessite. Other sassile species (E. muscosum mom. nov., E. prubedum n.sp. and fo. mirpurotom n.sp.) lack the white suxpension in the surface test of preserved colonies. With the exception of E. purpurctam n.up.. the living colontes are readily confused the colour range found in the present species overlaps that of E. forahdems and E. mowscostum nom. nov. Colour (if colonies hate not heen two lang in preservattel is helplul in distinguishing

Fic: 71, Eudistoma anaemarum n.sp. (QM GH4619): a. r.ooid with embryo ineubating in brood poueh. Eudistoma angolanum: b, sand removed from upper surfaee of colony to show atrial apertures elustered together (QM GH4663); c, thorax showing embryos ineubating and sphincter museles (QM GH4661); d, thorax showing musculature (QM G11967); e, larva, test vesieles not shown (QM GH4661). Seales: a-d. 0.5 mm ; e, 0.2 mm .
this species from others. Zooids are beige to pinkish-white in the prosent species, reddishbrown in E. muscosum nom. nov., and darkly pigmented in E. purpureum.

Embryos incubate in the oviduct as in E. incubitum n.sp. However they are larger than those of E. incuhitum and are not the same spherical shape.

Eudistoma angolanum (Michaelsen, 1914)
(Fig. 71b e)
Polycitor paesslerioides Miehaelsen, 1914, var. angolanus p. 430.
Polvcitor (Eudisroma) angolanus Miehaelsen, 1915, p. 452.

Eudistoma angolanum: Hastings, 1931, p. 86. Millar, 1953b, p. 281; 1962, p. 162. Kott 1957a, p. 75.
 Limlivermus smakabri lakioka 14i4a P. 251.

 (ill966).
 Bulean Hantmeyer 1919. Hastings 1031. Cape Vaturatist, (iteen l'wots AM Y1201 A W SL 20.3 Kot 1857a). Iokara of (Tokioka 10sta) Wem Alrica (Muhaclsen 1912 1915: Millar 145?b). South Africa (Millar 10021.

Daschrolum
External Apmarantr Colonies ate flattopped cushions up to lers ligh and 2 km or more in greatest dimension. The tent is tensely impregnated with sant, which also adheres to the surlace of the colony. the siand is interrupted only by pooids. These lie parallel to one another. perpondicular to the upper sultate ol the colony.

In life the dark red of the teal is seen helween the salud grains. In preservativesmall dark pigment cells are throughout the test, espectally around poonds, and the lest is a dity hrown

Up 108 pooids are incireles of ahout 4 mm diameter, athough these are hard to see from the surlace. being obscured by sand. Branchal apcrtures are around the perimeter of the cincle. and atrial apertures oper around the sides of small circular depressions (rudimentary cloacal cavitics) in the upper surlace. One or 2 atrial openings are also in the centre of each depresumm. Branchat and atrial lobes are conspicnously triangular. and dorsal lobes of the branchial aptrture and anterior lobes of the atrial aperture (directing the apenings away from one anothcis project from the surfact between the sand grains.
 are pinh. with a greenish stomach. They are about 0.5 mm long when contracted. The siphons are hoth long and cach one has a conspieuous bulging sphincter muscle at the outer end.

On the thoras are 20 to 25 Iongirudinal muscle hands and an alonost complete coun al ahout 20 circular bands. Longitudinal muscles continue in 2 wide bands along each side ol the abdomen. I hree rows of fairly long branchial tentacles and 2 or 3 anterior rows of short attampy ants are at the base of the long branchial sipion A long pretentacular area uccurs in the branchial siphon. and also a long unnerforated prestigmatal area in the phatyon. About 15 stigmata are in the anterior row. hat these are dilficult to count, The gut has the usuat long ocsophageal neck. small.
smooth stomach. long duodenum, and welldefined ovat posterior stomach. In contricted specimens the gut is twisted posterior in the sturtitill.

One 103 large embryos are in the atrial cabvly of specimens collected in the Capricorn Groun during: Oetober and November and in Januaty from 1 irard 1, lailed larvat are in colonies from Wistari Keef in October (QM GH46il) from Heron I. in November (QM GH4663) and Irom lizand I. in January (QM Gll966).

The larval trunk is 1 mm long. and the tail winds abour hallway around it. There are? rows of about 14 long ectodermal ampullae covering the anterior hatf of each side of the trunk. They inctease ill length with maturity. Larvate have red pigment III the bather prominent posterion horns of the trunk haemonoul. in the stalhs of the arlasare organs, and in the ectodermal ampullae. Adhesive organs in the anterior mid-vertical line are lame and have a hat-topped axial eylinder in an ectodermal cup. The larsal test is crowded with vesicles, which originate as terminal expansons of line threads that extend through the teat liom the evtodermal cells.

Rimakes: This species, with its hard sandy colones and blackish red pigment showng between the sand grams has a characteritic appearance, as do the rooids, with therr long. sinuous atrial sjphons and bulging terminal siphonal sphincters.

The species appears related to the enasurn Australian E. regmum, the Indian Ocean species L. corrosum n.sp., and the Magellance fi. magallutems Michaelsen. They all have a smilar lavin, whe ted-brown pigment in the antertor smopullac and postcrioy horns of the larval trunk hatmosuct; and they all have well-lormed systens. with rudimentary cloacal cavitics. Eudisomm carnorgem nasp. $1=$ Sigillina magallaransin: Michaelsen 1930: Kout 1957.a) has the same 3 rows of larval ectodermal ampultae as the present species, although they are not as long: and its larval trunk is longer $\{1.5 \mathrm{~mm}$, but only 1.0 mm in E angolamm). Ewdistomar angolamum is the onty species of the group thal lacks the large test vesicles and the bare \{sand-frec\} areas over the systems of zooids. Eirdixtoma muscoszm nom. nov. hat similar accumulations of pigment in the posterior horns of the larval haemocoel, but is distinguished by its smooth shiny surlite and lack of eloatal depressions in the surliste.

Michaelsen tlought the present species a Sariety of Polycitor (Eudishoma) puesslerioides. However. P. paessterioides var. Bypicus has only weak sphinctermuscles. Michaelsen(1915) subsequently
elevated his var. angolanus to full species status and recognised two varieties, yypica and togoensis. Millar (1953b) deseribed a further specimen from the type location on the African Gold Coast that has characters intermediate between Michaelsen's varieties; and thus it is probable that these represent no more than intraspecific variations. The larval trunk of the Gold Coast specimen (Millar 1953b Fig. 2b) has the same rows of long papillae on the side of the larval trunk as those found in the Australian specimens.

Hastings (1931) examined the type of Polycitor amplus: Hartmeyer, 1919 from north-western Australia. and another large (8 cm diameter and 3.5 cm thick) specimen from the same location. She found the characteristic long siphons and conspicuous sphincter of E. angolanum in both.

The species has a wide recorded geographic range from the western African coast to the western Australian coast, and the records from the Capricorn Group and Lizard 1, suggest the tropical eastern coast of Australia is included in the range. There is no known character indicating that more than a single species is involved. Unlike the strictly tropical E^{*}. carnosum n.sp. which has been recorded only from the Indian Ocean. records. of the present species do include some from temperate waters - of both South Africa (Millar 1962) and south-western Australia (see above). This could be the explanation for the continuity of range between the West African coast and the Indian Ocean.

Eudistoma aureum n.sp.
(Fig. 72)
Eudisfonla pyriforme: Koit, 1972a, p. 9.

Distribution

'IrPe Locsuty: South Australia (St Vincent's Gulf, off West Beach Posidoma beds, 12.20 m coll. S . Shepherd 27:12.66, holotype SAM E20lk4; paratypes SAM E2085).

Further Rfcords: None.

DEscriplion

Extirnal Appearange Colonies are flat- to convex-lopped lobes, up to 4 cm in diameter narrowing basally where sometimes the test is produced into root-like extensions. Sand is embedded in the test throughout the lower part of the colony, and continues in a layer beneath the surface of the upper part. Thus, in the upper hall of the colony, sand is absent from the surface and in the centre. The test is Firm and gelatinous and the embedded sand enhances the firmness of the colony- Living colonies are reported to be bright yellow, Zooids are in circular systems,

Internal Structure: Zooids are large and robust, up to 1 cm long even when contracted In preservative they are brownish-red, with irregular patches of pigment scattered in the body wall. The atrial siphon is about 3 times the length of the branchial siphon. On the thorax are about 15 strong longitudinal muscles. and these appear to subdivide, forming more numerous muscles in a wide band along each side of the abdomen. An almose continuous coat of circular muscles lies on the tharax, beneath the longitudinal bands. There is a wide band of about 6 circles of short branchial tentacles. At least 25 stigmata are in the anterior row, which curves anteriorly along

Fic. 72, Eudistoma aureum nisp. (holotype SAM E2084): a. colony; b, section of colony showing distribution of sand in the test; c , zooid. Sceles; a, b, 1 cm ; c., 1 mm ,
the dorsal mid-linc. However, the stigmata are difficult to count in these zooids and the exact number was not determined.

The ocsophageal neck is long and in these specimens is constricted into 5 more or less equal segments along its length. Since the whole abdomen is filled with trophozooite cells and there are no gonads present, it is probable that these 7.00ids are entcring the vegetative phase. The usual smooth stomach, long duodenal area, and oval posterior stomach are in the posterior part of the abdomen.

Remarks: Kott (1972a), misled by the pyriform shape of the lobes, assigned these specimens to Eudistoma prriforme. However, lobcs are much larger than those of E pyriforme, and the naked, sand free test over the upper part of the colony further distinguishes the species, as does the bright yellow of the living specimens. Eudistoma globosum also has a naked sand-free layer of test over the upper surface, but is distinguished by the absence of circular systems as well as by its smallcr size, the colour and the absence of a sandfree arca in the centre of the upper part of the colony. The temperate species, E. maculosum n.sp. has a layer of sand in the middle layer of test, although the sand particles become less crowded toward the base of the colony. Eudistoma maculosum is further distinguished from the present species by its investing colonies and the 2-toned colour pattern of both living and preserved specimens. The general shape of the colonies, the firm test, and arrangement of zooids in the present spccics, resemble some of the larger specimens of the tropical E. malum n.sp. (see QM GH798). The latter species also has sand embedded in the stalk, but lacks the characteristic layer of embedded sand bencath the upper surface.

Eudistoma bulbatum n.sp

(Fig. 73)
Eudistoma pryiforme Kott, 1972d, p. 244,

Distribition

Type Locality: New South Wales, off Cronulla, 140 m , coll. J. Maclntyre 16.6 .65 holotype AM Y2204. paratypes AM Y835 Y842 Y 1120 . The species is known only from the type locality.

Description

External Appearance: Colonies are upright and club-shaped, the lower half swollen, sometimes with some fine basal root-like extensions, and often divided. They are up to 2.5 cm high, the upper third of the colony about 0.5 cm in diameter, and the lower two thirds about 1 cm in

Fig. 73, Eudistoma bulbatum n.sp. (paratype AM Y835): a, colony; b, upper surface of colony showing openings, atrial apertures directed in toward the centre: \mathbf{c}, zooid. Scales: $\mathbf{a}, 2 \mathrm{~mm}$, b,c, 1 mm .
diameter. The test is sandy throughoul. The lower swollen part of the colony apparently was embedded in a sandy subatrate and has larger particles of sand athering to the autside at the colony than are embedded in the test.

Zooids are in a circle around the sarrow upper part of the colony. The test in suised wer the anterior end of each 7obid. Branchial apertures are atound the outer perimeter, and atrial apertures around a central depression. One or 2 zooids are sometimes in the echure of the circle whth their atrial apertures directed unt toward the atrial apertures of the circle of pooids surrounding them. Each colony has about 12 roonds.

Ixtlival Stkucture Zooids are rohust and muscular. On the theras are about 20 longitudiad muscles and an almost continuous inner coat of circular muscles containing at Icast 40 bands. The abdomen is ahmost completely encased by the longitudinal muscles which cominue along each side in at very wide band. In these specimens the pooids are ahoul 1 cm longe, and are found conatacted into the base of the colonies.

The branchial aperture is terminal. but isturned toward the outside of the colony, and its dorsal lobes are longer than the ventral ones. It he atrial siphon arises from the antero-dorsal part of the shoras and is nut longer than the hranchial siphon. The two apertures are well separated by the ventral inclination of the branchiat siphon and the anterodorsal part of the zooid stretched out between them. lobes of the apertures are large and triangular.

An extensive prehranchial region exists behind the 3 sous al tentacles. About 15 stigmata are int the arterior row. which curves anterionly atongside the mid-dorsal line, although contratetion makes them impossible to count precisely. the rectum of the contracted zood is finely wrinkled and the proximal part of the aseending limh of the gut is bent up in a loop posterior to the stomach. The stomach, duodenal area, and posterior stomach are in the posterior end of the abdomen. The stomach is dark greenish-yellow, Neither gonads nor embryos are in the available material.

RtMARES The frec-standing elub-shaped colonics of the species are distinctive. A colony most closcly resembles ane of the almost cylinutioal upright lobes of E. Inricanm (Sluiter. 1909) which has the same small, simple circular systems of rooids. However E. Wricalmm has no sand dround the upper part of the colony. cach lobe is much smaller, and is attached with others so a common basial test mass.

Eudistoma carnosum n.sp

(Fig. 74)
 var. hupfen p. ${ }^{3}$ (part, matcrial from the Seychelles and Red Sea with cloacal systems.
Sizillima (Paesweria) magultuensifo Michaceloen. 19.30 p 492 (parte material with cloucal systems.
Sigillina magalhomeis kote, 1957s. p. 79.

Triot Loxal:a Western Austratia (Rotnest I (ape Vlamment. Fish Hook Bay. under undercul of linmamu reets. coll. P. Koll 19.11.5!, holotyge AN Y'I284: Rouncel I. Geordic Bay. paralyne AM Y1291: Rentumat 1., Mury Cove coll. P. Koll November 195I. paratype AM Y1290)
 Abrolhas. WAM 3.75 . $\$ 14.83$ QM GH2lOR: Rostnest 1. QW GH4 5.59 (iH4660)

Pathotsty Rtasharm: Wentern Australia (Ifoutman's Abrothos Michatken 1930: Cockburn Sound Michatelsen 19.0. AM Y220S Koll 1957al
Descrepiono
Fviereal Arptarines Colonics lorm rohust Sandy, flat-topped cushions, up to 5 cm long, 4 cm wide and 2 cm high. Sometimes the surface is divided by sandy ridges into circular arcas, about 2 cm in diameter with a central. conical prominence and ermazal cloucal apcrture. Systems are 3 to 6 mm in diameter and contain up 20 zooids. Branchial apertares are on the outer surface of the colony. and atrial apertures are around the sides and in the floor of the cloacal cavities that lic in the centre of each sysem. Sind is absent from the surtace test around the choacal cavity and usually it does not adthere to the outsite wi the colony. Anterior lobes of the atrial aperture and dorsa! lobes of the branchial aperture are enlareed and, with their covering ol test, project around the openings. The pointed anterior atriat lothes are especially conspicuous and form the rim of the cloacal cavity.

The colour of the living colonies is not known. Large spherical vesicles 0.3 to 0.5 mm in diameter. are throughout the test. except where the embedded sand cxclades them. These vesicles contain erystalline particles.
 0.5 cm long when contracted. Apertures are on long siphons with a narow sphincter minscle near the end of each siphous. The thoracie musculature is strong with about 30 longitudinal bands. and the circular horizontal mbectes form an almost continuous coat ol about 30 thands heneath the longitudinal ones. The longitudinal museles continuc along the abdomen in about 2 wide bands on each side. About 20 moderately long branchial tentactes are in 3 row and some stumpy ones

Гig 74, Etrdishoma carmosum n.sp.: a, surface view of colony showing branchial openings of a system, with atrial spenings in a rudimentary common cloaca (holotype AM Y1289); b, section through system showing sooid opanings (semidiagramnatic); x, contracted zooid with muscles removed from posterior half of abdomen (holntype $\wedge \mathrm{M}$ Y 1289); d. Jarva showing pigment in posterior horn of left haemococle and puinted extensions of ectodermal cells around apernures, but test vesicles not shown (WAM 814.83). Scales: a. Imm; c. 0.5 mm ; d. 0.2 mm .
are little more than papillae in anterior rows, but these could not be counted. There are about 16 stigmata per row. The dorsal stigmata ol the anterior row on each side eurve anterionly along each side of the dorsal mid-line.

The abdomen is of the usual form with a long, narrow oesophageal neck. At the posterior end of the descending limb of the gut loop is a rather
tlabby and inconspicuous posterior stomach.
The rather large (1 mm diameter) eggs are dark red-brown in preservative. Zooids of a specimen collected from Houtman's Abrolhos in August (WAM 814.83. QM GII2108) have a tailed larva in the atrial eavity. The trunk is 1.5 mm long and the tail reaches only to its anterior end. A feature of the larva is the numerous ampullae artanged
in 2 rows of about 14 on each side of the median athesive organs. The adhesive organs have wide axial columns and are on short, wide stalks. There are 3 rows of stigmata. Spikey proceses from the ectoderm around the apertures extend out into the test. Brown pigment is in the posterior horns of the larval trunk haemocoel and in the stalks of the adhesive organs.
Remarks large cloacal cavities in their conspicuous sand-free area of test are characteristuc of the species. It is distinguisfoed from E. reginum by its larger colonies and cloacal systems. longer siphons, large larval trunk with more numerous ectodermal ampullae and larger test vesicles
Michaelsen (1919, 1920) assigned specimens from the Seychelles and questionably also from the Red Sea to the westem African variety hupferi of the species Palycitor (Eudistoma) paesslerioides (Michaelsen 1914), Subsequently (1930), he placed the Seychelles and Red Sea material with newly recorded specimens from Western Australia in synonymy with the species Polycitor magalhaensis Michaelsen, 1907 from the Magellanic region, as Sigillina (Paessleria) magalhaensis, Sigillina (Eudistoma) paesslerioides, represented by varieties hupferi and typicus from West Africa, was distinguished from S. (Paessleria) magalhaensis by its smooth stomach and more nomerous (more than $[00$) branchial tentacles (Michaelsen 1930). The stomach folds that Michaelsen believed characteristic of the subgenus Sigillina (Puessleria) are artefacts and not true stomach folds, and the division of Eudistoma into the subgenera that Michaelsen proposed is invalid. Nevertheless the West African and Indian Ocean specimens appear separate species, their separation valid on morphological (more numerous branchial tentacles: Michaelsen 1930) as well as geographic grounds. Only some of Michaelsen's western Australian and Seychelles colonies (those with cloacal systems) are identical with the newly recorded material.
The Magellanic species, with similar cloacal systems and large embedded vesicles (symbiotic cells?) appear closely related to the Indian Oceati ones. It is unlikely they are conspecific because they have stalked colonies with a rounded head and much longer zooids, rather than the platformlike irregular and sessile colonies of the Australian specimens for which the present new species is erected.

Eudistoma carnosum n.sp. rescmbles Eudistoma angolanum Michaelsen, 1915, which, like the present species. was deseribed originally as a varicty of Podycilor (Eudistoma) paesslerioides

Michaelsen, 1914. Eudistoma angolanum is distinguished hy its conspicuous band of circular muscles on each of the siphons (see above).

The spikey eetodermal processes around the apertures were observed also in Eudistoma ovatum, and may occur also in other species (see Anmotaled Glossary: larvae).

Eudistoma constrictum n.sp.

(Fig. 75. Pate 15b)
DISIREEVIRON
Trpi LocAlirys South Austratis (Gitut Australian Bight, Yorke Peninsula, low water mark under rocks on headland near Chinamen's Hat $1 .$. coll. N. Holmes 6.11.76, holotype SAM [2083: Investigator Group, Topgattane 1_{1}, bottorm of rock slope near clifts 7 m , coll. N. Molmes 10.4.83, photo index PE0047/R929. peratype QM GH2291: Avoid Bay, Golden 1, coll. N. Holmes 9.4.87. paralype QM GH4186),

Furpmer Recorms South Australia (Great Australisn Bight, QM GH2406, Yorke Peninsula, SAM E2087: West I. QM GH2403; Spencet Gull, QM GH4551).

Discripution

EXTERNAI APMAKANCL: Colonics arcirregular rounded cushions of maximum dimension 4 cm and up to 1 cm high. The upper surface slightly overlaps the base. Zooids open on the upper surface by separate branchial and atrial apertures that are placed lairly close wone another in an oval sand-Iree area. Sometimes the test between pooids is crowded with sand particles and faecal. pellets. The sand gradually becomes less crowded toward the base, Sand is not always present in the upper half of the colony, although the oval areas in the surliace are quite conspicuous - the solid layer of test between zooids contrasting with the thin layer over the top of cacla zooid

Each zooid is contained in a compartment in the test which is constricted around the upper part of the oesophageal neck to form in narrow canal between the roomy abdominal and thoracic cavities. Frequently the contracted zooids are severed at this point leaying the thorax behind in the upper layer of the colony as the abdomen contracts back into the base. The sand embedded in the test makes the compartments rigid. Zooids extend at angles to one ano ther in the test. crossing one another irregularly,

Intrmal Sirneture: Zooids are robust and muscular. They are pinkish-brown in alcohol preservative. About 30 longitudinal muscle bands are on the thorax. More numerous circular ones are irregularly distributed and confined to the middle of the iborax, Longitudinal museles continue onto the abdomen in 4 wide bands on

Fig. 75, Eudistoma constrictum n.sp.i a, section through colony showing zooids opening on the surface in sandfree areas (paratype QM GH2291); b, zooid openings on surface of colony (holotype SAM E2083); c, thorax showing muscles (paratype QM GH4186); d, whole zooid showing gut loop (paratype QM GH2291); e, larva (paratype QM GH4186). Scales: a,b, 2 mm , c-e, 0.5 mm .
each side. Both siphons are relatively short. The anterior end of the zooid is often flattened, with both apertures rising from the flat anterior surface. Short branchial tentacles are arranged in about 7 rows at the base of the branchial siphon. There are about 25 stigmata per row, but these were difficult to count. The dorsal end (involving about 5 stigmata) of the anterior row curves forward along each side of the dorsal mid-line. A short oval posterior stomach is in the descending limb of the gut loop.

Up to 4 embryos are present in the peribranchial cavity of specimens collected in April (QM GH418). Larvae have a trunk about Imm long with the tail wound about three quarters of the way around it. Lateral as well as median ampullae alternate with the adhesive organs.

Remarks: This species has a smooth, sandy
surface, and sand is present throughout the test as in E. ovatum and E. sabulosum n.sp. It is readily distinguished by the oval sand free area of thin test over the anterior end of each zooid, the absence of circular systems, and the narrow constriction of the test between the abdominal and thoracic test cavities. In Polycitorella spp. there is a similar constriction, containing a sphincter which regulates the withdrawal of the zooids from the surface. However, in E. constrictum a similar circular muscle is not present in the constricted part of the test.

The absence of systems is a relatively rare occurrence in Eudistoma, known only in the present species, E. microlarvum n.sp. and in the stalked species E. globosum, E. elongatum and E. laysani. In most others, zooids are arranged in rudimentary systems.

Eudistoma eboreum n.sp.

(Fig. 76a,b)
Disiribtiton
Trpt Locally Queensland (MacGillivrays Reef near Lizard I.. 14 m , coll. D. Phillips June 1980, holotype QM GH336).

Description

Exifrnal. Applarance: The holotype is the only specimen availahle. It is a large scssilc cushion, convex on the upper surface, about 3 cm in diameter and 1 cm thick in the centre. The upper surface is smooth and rounded. In life it was reported 'whitish'. In preservative it is firm, slightly translucent and pinkish-huff with spherical to oval hrownish-orange pigment cells, about 0.01 mm in diameter, distributcd fairly cvenly through the test. Large, black fusiform to branched. dendritic cells are also in patches. cspecially around the zooids. Zooids themselves arc whitish in preservative with some whitc patches in the body wall.

There are circular systems of 3.4 or 5 zooids. Atrial apertures are fairly close together in the centre of the triangle, rectangle or circle outlined hy the hranchial apertures. Branchial apertures are well scparated from one another, and zooids are not crowded.

Internal Structipre: Zooids are robust, about 1 cm long when partially contracted. The atrial siphon is long and often expands into a balloonlike structure. A discrete sphincter musele is around the distal cnd of the atrial siphon and around the short branchial siphon. About 20 longitudinal thoracic muscles overlie an almost continuous coat of circular muscles and then extend along the abdomen in a wide band on each side. About 20 stigmata are in each of the 3 rows, although the exact number was not determined. The anterior row, projecting forward along each side of the mid-dorsal linc has more stigmata than the others.

The oesophageal neck is long. The stomach, long duodenum and small oval posterior stomach are at the posterior end of the descending limb of the gut loop. Gonads in the gut loop at the posterior end of the ahdomen are mature. 1 large (1 mm long) embryo is in the atrial cavity.

Rtmarks: Larvae are not known, but the size of the embryos present in the atrial cavity of the holotype indicates the larval trunk would be more than $I \mathrm{~mm}$. The known species with larvac of this size, gelatinous smooth-surfaced test without cmbedded sand, and a sessilc habit are E. purpureum n.sp. and E. muscosum nom. nov. Neither of these have the distinctive dendritic cclls of the present species. It is further distinguished
by its especially long atrial siphons and sparse zooids.

Eudistoma elongatum (Hcrdman, 1886)
(Fig. 76c-f. Plate 15c)
Colella elongata Herdman, 1886, p. 110. Herdman and Riddell. 1913, p. 882.
Eudistoma elongata: Kotı, 1957a, p. 78.
Distribuition
Nrw Ricords: New South Wales (Jervis Bay, QM G10037). Queensland (Moreton Bay, QM G4906 G4910 G4966-7 G10047 G10147 GH356 GH4528-9: Fraser I., QM GH4527, Hervey Bay, QM G11938).
Priviousty Recordind: New South Wales (Porl Hacking, Port Stephens AM Gl2945 G1 2952 U3937 YI277 Kott 1957a; Neweastle Bight and Crookhaven River AM Yl2199 Y12200 Herdman and Riddell 1915; Port Jackson Herdman 1886). Queensland (Currumhin Kott 1957a: Moreton Bay AM U3933 Y2167 Kott 1957a).

The species is common in muddy habitats and on wharf piles in protected waters over the whole of its range.

Discription

Extrrnal Apriarance Colonies consist of numerous club-shaped to long (up to 60 cm) cylindrical, ropc-like zooid-bearing heads about 0.5 cm in diameter, on short cylindrical stalks of almost the same diameter as the head. In life they are opaque, whitish to iridescent blue. Occasionally they remain more or less the same colour in preservative, but more often become a brownishpink with soft transparent test. Faecal pellets are in the test, but emhedded sand is not.

Zooids are crowded in the head, opening all around the surface. Atrial and branchial apertures of each zooid open fairly close together, the atrial aperture anterior to the branchial opening. Systems are not formed.

Intirnal. Siructure: Zooids are small, up to 3 mm long when contracted. The siphons are relatively short. About 20 longitudinal muscle bands are on the thorax forming a rather open meshwork with a similar number of transverse bands. Separate longitudinal muscles continue along each sidc of the ventral mid-line of the abdomen, and are not collected into bands. Stigmata are about 20 per row. Zooids have the usual long oesophageal neck with the small smooth stomach near the posterior end of the abdomen. Gonads are in the posterior end of the gut loop. A small oval posterior stomach is in the posterior end of the descending limb of the gut loop.

Up to 8 embryos are in the atrial cavity of colonies collected in January and April, only 2 in those collected in luly and October, and none

Fig 76, Eudistoma chorcum nsp. (holotype QM GH336): a, portion of test showing pigment cells: b. zonid. tiudisroma clonkatum: c,d, colonics (QM G4805 GH4527); e. zooid, contracted, showing embryos packed in atrial cavity (AM Y1277); f. larva (AM Y1277). Scales: a. $0.5 \mathrm{~mm} ; \mathrm{b}, \mathrm{e}, 1 \mathrm{~mm} ; \mathrm{c}, 2 \mathrm{~cm} ; \mathrm{d}, 1 \mathrm{~cm}: \mathrm{f}, 0.1 \mathrm{~mm}$
in colonies collected in May, August and December.

Larvac are small with a trunk 0.5 mm long. The tail reaches only to the anterior end of the trunk. There is an ocellus and an otolith. Four large cetodermal ampullae alternate with the stalked adhesive organs in the median line.

Remarks. The long stalked heads of this species are unusual in this genus. Specimens are softer and more flexible than Sigillina australis which has similat long cylindrical heads. Some degree of overlap exists between smaller colonies of this species and some larger ones of Eudistoma laysami. and the species may he related - E. elongatum being an indigenous species with its range confined

In protected waters in the northern hall of the New South Wales coast to southern Queensland. Eudistoma elongatunt can be distinguished from E. laysam by its more numerous thoracic muscle bands, longer zooids, and more numerous embryos in the atrial cavity, as well as the much longer zooid-bearing heads.

Eudistoma gilboviride (Sluiter. 1909)
(Fiy. 77. Plate 15d-f)
Polyethor gilhaviridis Sluiter, 1909, p. 6.
DisikIRIVION
Neiw Ricoras: Quensland (Heran 1. QM G10043 GH4593: Swain Reefs. QM GIl961: Lizard L.. QM G11959: Britomart Reef, QM GH4530).

FG 77. Eudistomog githovirite: a. colony (QM GH4530); b, pooid (QM GH4530); c, gut loop with branches of gastro-intestinal gland (OM G11959): d. larva (QM GH4530). Scales; a, $1 \mathrm{~cm} ;$ b, $\mathbf{c}, 0.5 \mathrm{~mm}$: d, 0.1 mm

Pravioust Reforimer. Indonesia (zMA TUl269 Sluiter 1909).

DI:SCRIPTION

Extrenal Apprabancl: Colonies consist of small (2 cm high), crowded. wedge-shaped lobes. widest on the upper flat surface (up 101.5 em diameter) and reducing in diameter toward the base where they are joined to common basal test. The test is lirm and gelatinous and zooids open into slightly depressed areas on the upper surface.

In life the newly recorded colonies are reported as green base with dark green lohes motiled cream, green and yellow, or grey-green. In living colonies lobes are inflated and appear confluent. Freshly preserved specimens are greenish-black, with the pigment in minute cells in the surface test around, but not in zooids. Beneath the surface layer the test is greenish grey, and rather transparent with sparsely seattered dark pigment cells. Zooids are pinkish-brown to white. Some sand occurs in the base of the colony and it extends up into the centre
of cach lobe. Long-preserved specimens are grey. with blaek pigment cells crowded around and over rooids resulting in blackish surface marks emphasing the arrangement of zooids. In the type specimen (ZMA TU1269) the colour pattern shown by Sluitet (1909) is still recognisable. demonstrating the unusual stability of pigments in this species. The type diflers from the newly recorded material in having yellow pigment in the raised swellings of solid test between the depressions and furrows into which fooids open. Depressions are made conspicuous by the eoncentration of dark pigment always found associated with rooids in this species.

Zooids all open on the flat upper surface ol each lobe. In small diameter lobes they are in a circle just insite the outer margin of the upper surface. As the lobes inerease in diameter 2 or 3 zooids form small systems with their atrial apertures close together, and sometimes a Cew rooids seem not part of a cireular arrangement.

Internai Structure The zooids are about 4 mm long when contracted, and not particularly muscular. The atrial siphon is longer than the branchial siphon. Muscle bands are fine, about 14 longitudinal crossing about 20 citcular bands on the thorax to form a rather open mesh. Longitudinal muscles extend along the ventral side of the abdomen, one band each side of the midventral line. When contracted they draw up the ventral part of the abdomen causing the proximal part of the rectum to curve out. Sometimes the whole posterior end of the gut is bent up against the rest of the abdomen.

Stigmata are reduced in length toward the ventral end of each row. The anterior row has 24 stigmata, the dorsal 4 turning anteriorly along the mid-dorsal line, the middle row 20 and the posterior row 18 . There are 3 rows of branchial tentacles. The large, oval, posterior stomach is in the posterior end of the gut loop. The gastrointestinal gland has long tubules curving around the rectum.

Testis follicles are not crowded. One or 2 embryos are in the atrial cavity of specimens taken from Lizard 1 . in November. In the colony from Britomart Reef (QM GH4530) are 2 embryos, one immature and the other a tailed larva. The larval trunk is large (0.9 mm long), and the tail curves up across the left side of the anterior end of the trunk and over the upper surface. The paired, lateral, ectodermal ampullae are large and leafshaped extending anteriorly and terminating in a point. They are dorsal and ventral to the adhesive organs, and alternate with them. The ventral pair have an unusual rounded prominence at the posterior end.

Remarks: Small, flat-topped and wedgeshaped lobes of the colonies and dark pigment cells that persist in the surface test after preservation are distinctive, as is the rather sparse distribution of rooids, the small systems, and leafshaped ampullae of the larvae. In E. glaucum numerous lobes arise from common basal test but they are a different colour and are larger and more rounded. They cannot be confused with colonies of the present species.

Eudistoma glaucum (Sluiter, 1909)

(Fig. 78)
Polycitor glaucus Sluiter, 1909, p. I2.
Eudistoma glaucus: Tokioka and Nishikawa, 1975, p. 331.

Eudistoma rigida Tokioka, 1955b, p. 50. Not Kott, 1981, p. $152(<$ E. ligrum n.sp.); Eudistoma rigidum: Monniot and Monniot, 1987, p. 70 (? < E. muscosum nom. nov.).
? Eudistoma ofivaceum: Monnion and Monniot, 1987. p. 67. Not Van Name 1902, p. 120.

Disiribution
Nrw Recoross Queensland (Capricorn Group, QM Gl1952 Gll962-5 Gl 1979 GH3005 GH4119 GH442631 GH4441 GH4452 GH4468; Swain Reefs, QM GH4469; Broadhurst Recf, QM GH4425; Little Mary Reef, GH279).

Previously Rfcorded Palau is (Tokioka 1955b). Indonesia (Sluiter 1909). Okinawa (Tokioka and Nishikawa 1975). Fiji (Kott 1981).

Description

External. Appearance: Colonies consist of large (up to 3 cm diameter) rounded or cushionlike heads, usually with a short thick, basal stalk. Often several heads of various sizes arise from a common basal mass. The surface ol the colony is smooth and shiny. The test is gelatinous and firm. Living specimens are a vivid, deep, mossgreen becoming blackish-blue in preservative. The pigment leaches into the preservative and although some minute dark pigment cells persist, they disappear in time from the colony. Sometimes zooids are green when first preserved, with the pigment especially retained in the gut, gonads and body wall. In due course pigment is lost altogether from preserved zooids. The test contains some sand, especially in the stalk and in the centre of the colony but usually it is absent from the softer test of the heads of the colony. Faecal pellets are also present in the test and often are coloured green. Zooids are arranged in small circular systems of 4 or 5 zooids with their atrial apertures in the centre of the circle.

Intlrnal Structuri Zooids are robust and long, even contracted ones being up to 1 cm long. However, in comparison with zooids of some other species (eg. E. anaematum n.sp., E. purpureum n.sp. and E. pratulum n.sp.) both the thorax and the atrial siphon are relatively short. About 20 fine longitudinal muscle bands are on the thorax. and these extend along each side of the abdomen. More numerous (about 50) inner circular bands are evenly spaced on the thorax and around the branchial and atrial siphons. Twenty long rectangular stigmatal are in the posterior row and 25 in the anterior row, which has its dorsal end curving forward along each side of the mid-line. Extensive pre- and post-stigmatal regions are in the pharynx. The oesophageal neck is long and thin. Gonads are in the gut loop and testis follicles spill out over its sides. There is a rather indistinct posterior stomach. A delicate but relatively long vascular appendix projects from the posterior end of the zooid.

In the newly recorded material embryos (one

Fr. 78. Eudishona glouram: a. colony (QM G11962): b-d. outines of various colonies (QM (i11952 G11962 Gill979); e. 7ooid (QM G11979); f, larva (QM Gil979). Scales: a. 2 mm ; b-d. 1 cm ; e. 0.5 mm : f. 0.2 mm .
or 2) are in the atrial cavity of colonies taken from the Capricorn Group in December and January (QM Gll963 Gll979), but not in those collected in March, July or September. The tarval trunk is about 1.2 mm long.

The adhesive organs are in a median vertical row anteriorly. They have short thick stalks and vertically elongated axial platforms of columnar cells in shallow epidermal cups. The adhesive organs alternate with cpidermal ampullae in the mid-line, and 3 lateral aecessory ampullae are on each side. one more or less on each side of the base of each adhesive organ.

Remarks: Tokioka and Nishikawa (1975)
concluded that Eidisroma rigida Tokioka, 1955h from the Palau ls, with its green test, but yellowishbrown rather than greel zooids, was distinct from the present species. However, zooids and colony of both speeies resemble one another, and in preservative become the same bluish-black. They arc here considered synonymous. Eudisroma marianense Tokioka. 1967a has a similar colony and larva although the larval trunk is slightly longer than that of the present speeies. The colour of the Marianas Is speeimen is not recorded. The present species is never the sed-brown colour of the small eolonies assigned to E. rigidum by Monniot and Monniot (1987).

Dudistona viride Tokioka．1955b，from the Palau is has its green pumentation prancipally in the zooids，and they can he seen through the translueent test，while the whele test is green and opaque in the present species．Eudistoma viride alsn has relatively large forvids and an incubatory pouch．It appears to be a synonym of Sigillina signifera（see above）．Tokioka and Nishikawid （1975）have discussed the relationship of E ． matarge Tokionk，1454a Iront the Tokara 1 s ，with the present species．Their view that the former ：pecies represents jureniles of E ，shataum seems unlikely since \boldsymbol{b} ．zonarae has a milky white translucent test．While the prineipal characteristic Whe persent species is its upaque test，green when living and blackish blue in preservative．

Thice colutur of the colony and the distribution of pigment in E ，glauctum resembles that in f ． divureum（Van Name，1902）from the tropical Athatic．Specimens of the latter species from the Bahamas have a varicty of colony forms．．some with sessule heads on a hasal mat and some long and stalked（AMNH344；see also Van Name 1945）． Although some rescmble the shape of colonies of the present species，heads are smaller with fewer poobids and stalks are longer．Further，it is unlikely that the tropical Atlantic species has a range that incluctes the western Pacilic．Therefore，the two should not he regarded as compecific．Monnon and Monnot（1987）refer to a specimen（undes－ eribed）of E．alivaterem from Fiii，hut it probably belongs in the present spececs．

I he posterior abdominal vascular stolon of this specien is longer than in nopat othets of the genus． It extends dawn inta the stalk ：ls an sisilliza spe．， but lacks the extension of the epienrdium which osears in the latler genus．findivtoma superlatum n．sp．has a similar vascular stolon

Vindistoma globosum Kols． 1457
（Fig． $79 . a-d$ ）
fublstentra shetrosum Hate，1957e 5． 72

 GH4503．WAM t3．．75．Masgaret Rwer，WAM 815．8．3 （IA G／L232K）Queenslant ICupricorn Group，Q．M （iH4574）
 1．ムM ソ1212 Y1270 A Kott 1957a）。

Descriation

Exiernal Appearance．Colonies usually corsist of rounded to oval or comieal heads that uverlan a shurt，thick statk．Stalked heads are up to 4 cm high．Scveral heads anotimes arive from
hatisal text，of the stalk may brauct．The surface test of the head of the colony is always free at sand．However，sand grains are crowded in the test and propeet up Irom the stalk into the eentre of the head of the colony．Faecal pellets are throughout the colony．

In life the colour of the sand crowded in the stalk affects its colour．The gelatinous test of the head is datkly pigmented，the colluur becoming progressively more intense tsward the top of the colony．Arvund the lower half of the head，the embedded sandy core projecting tip from the stalk is closer to the surface and the colour less intense． The colour on the top of the heads is＂blackish－ slatc＇（Ridgeway 1886）．Kott（1957a）recorded specimens from Rotuest I．as blaekish－green．

In Ireshly preserved material are both black and tun spherical pigments cells up 1000.04 mm in diameter in a layer beneath the surface of the colury，and in the thoracie body wall of ronids． 7oonds are otherwise whitish－yellow with a greenish－yellow stumach．In long－prescrved colonies．Jrom Western Australia the tan colour persists，but not the black．

Inttrnal．Sibiknim：Zooids are relatively long and slender when relaxed．extending from the surlace of the head down into the base of the stalk．However，they contract to ahout 2.5 mm ． The atrat sphon is longer than the hranchial siphon．and is located well down the thorax．There are 3 rows of branchial tentacles．About 15 longinudinal thoracie muscles continue in a wide hand allong eash side of the vental line of the abdomen，causing it to curl up when contraeted． An unperlorated prestigmatal area is in the anterior part of the pharynx．The stigmata， pethaps 15 to 20 per row，are dilficutt tor count The gut and gonads are in the usual position in the posterion end of the atbdomen．

A single large embryo is in the atrial cavity of specimens taken from Rotuest I．in March，and Margaret River in January．The larval trunk is 1.7 mm long．It is the largest known for an Findistoma species．The tails winds almost three quarters of the way around the trunk．Wide，rather Hat median ampullace alternate with the large adthesive organs in the vertical mid－line anteriorly．

Remakns．Superlicially colonien Irom Western Australias with their crowded rooids in stalked heals rescmble those of E．elongatum，except they are a darker colluar，do not become long and cylindrical，have sand emhedded in the stalk and the centre of the head．and have laree spherical pigment cells．The migment cells resemble some round in f．：maculowum n，sp and E．figrum n．sp． hut are larger．Eudistoma mususum nom，nov．

FIG. 79, Eudistoma glohosum: a, colony (QM GH4563); b, section through colony showing sand (WAM 815.83): c, thorax showing brown pigment in hody wall (QM G4579); d. larva (QM GH2128). Fudistoma gracihum n.sp.: e. zooid (holotype QM GH4531): f, larva (QM GH4533), Scales: a,b, lcni; c.e. 0.5mm; d, 0.2mm; f. 0.1 mm .
has shiny brownish red pigment cells of a similar size in freshly preserved material but they disappear in preservative, and are never hlack as in the present species. The species are further distinguished by the shape of the colonies and the arrangement of the zooids.

Eudistoma gracilum n.sp.

(Fig. 79e,f)
Distribution
Type Localitr Queensland, Heron 1. north reef, coll. P. Kotl 15.1.83, holotype QM Gild 531 ; paratype QM GH4532.

Firther Rfcorns. Queensland (Heron I.. QM GH4533 GH4837).

Description
External. Applaranct: Colonies form smooth-surfaced sheets. up to 6 cm in maximum diameter and only about 0.5 cm thick. In life, the test is a soft, red or 'orpiment orange' (Ridgeway 1886) translueent jelly resembling a water-ice. Zooids, white or orange, are easily seen through it. Some faccal pellets are in the test. In preservative colonies are a rather dirty, transparent, beige and zooids are green, the green being
especially concentrated in the muscles. The soft, sometimes afmost mucus-like test fills concavities in the surlace of the coralline rubble over which it grows and zooids often are drawn down into these concavities. The substrate thus forms a framework for support and protection of these delicate colonies

Systems were not identificd in the soft test, atthough it is possible they were present in the living colony, as the atrial siphons are relatively long and probably open in the centre of a circular system. Spherical brown cells, about 0.01 mm diameter, are scattered evenly in the test and sometimes these collect together in almost spherical reservoirs in the test.

Inafrnal Sirvelire: The delicate, relatively small, stightly contracted rooids are only about 2 mm long. The 12 longitudinal muscle bands on the thorax, continue along the abdomen in two wide bands. No circular muscles were detected on the thorax. There are only about 10 stigmata per row. l"he oesophageal neck is long and narrou. The small, smooth stomach and small oval posterior stomach are in the posterior end of the abdomen.

A single embryo is in the atrial cavity of specimens cotlected in May (QM GH4533). The larval trunk is 0.6 mm long and single ectodermal ampultac alternate with the adhesive organs in the anterior mid-line. The tail winds almost three quarters of the way around the trunk.

Rfmarks: The species is distinguished by its small zooids with relatively few stigmata, fine and exclusively longitudinal muscufature, and the soft test and thin colonies. The farval trunk is about the same length as that of E. incuhinum n.sp., but is not so deep and its ampulfae are not so wide. The larvae of E. laysani and E. elongatum also are similar, but smaller.

Eudistoma incubitum n.sp.
(Fig. 80)
DISTR!BEIIION
Tybr Loxamy: Queenstand (Capricorn Group, NW Wistari Reef, rubble fauna, 1.WM, coll. P. Koll 11.11 .85. holotype QM GH4537. paralypes QM GH4538).

Firibfr Rfcords Queensland (Capricorn Group. QM Gill953 GH2268 GH4534 6 GH4565 6 (iH4584).

Descriphon

Exil:rnal Appearanci: Colonies consist of upright, eyfindrical to mushroom-like lobes up to 2 cm high. In young cotonics (QM GH2268) zooids open on the upper free end of the tobe, and the anterior part of each zooid projects lirom the surface. Larger tobes have circular to ovat heads up to 2 cm in diameter, supported by firm
eylindrical basal stalks. Sometimes the stalks branch, and numbers of tobes arise lrom common basal test. Living colonies arc white, with transparent test and white zooids, and are the same in preservative. Faecal pellets are in the test. especiafty in the stalk, but sand is not. Circular systems of 4 or 5 zooids are seen through the transparent test of the head.

The surface test contains cvenly spaced, conspicuous spherical cells about 0.05 mm in diameter and about 0.3 mm apart. These give the cotony a speckted appearance when magnified.
inthrnal Structure: Zooids are smafl, about 3 mm when strongly contracted. When relaxed they occupy the whole height of the colony and are slender. About 10 longitudinal muscles are on the thorax, continuing along the whole fength of the abdomen in up to 7 bands of unequal width on each side, although sometimes only a single wide band is on each side of the vontral mid-line. Contraction of the longitudinal muscles not only makes the oesophagus minutely wrinkled, and the rectum folded and bent, but also hends the abdomen up against the ventral border of the thorax. A band of about 12 circufar muscles is around the middte of the thorax. About 10 stigmata are in the anterior row. hut they could not he accurately counted in these contracted specimens.

The gut is characteristic ol the genus with a small smooth stomach, long duodenal region and oval posterior stomach. Long tubules of the gastro-intestinal gland lie along the proximal part of the rectum. Gonads are in the distal part of the gut toop. The mate follicles are relatively large when mature. The proximal part of the vas deferens expands into a long spindle-shaped seminal vesicle when filled with sperm.

In specimens eolfected in May, July. August and Novemher (QM GH4538 GH4584 GH4565 GH4537 respectively) a row of up to 4 embryos is in the distal part of the oviduct, just posterior to the thorax. Embryos lie in a devclopmental sequence with the most advanced at the top. They are incubating in the oviduct, and consequently were fertilised therc, rather than in the atrial cavity.
l.arvale are almost spherical, the trunk about 0.6 mm long. The tail is moderatcly long, reaching about three-quarters of the way around the trunk. The surface of the larval test has the same speckted appearance as the surface test of the aduft colony, This is due to terminal expansions of thread-like extensions from the larval ectoderm. These vesicles can be removed with the larval test. They resemble similar structures in the angolanum group of Euclistoma (see above: Eudistoma; and larvae in

Fig. 80, Eudistoma incuhinum, a, colony showing systems of rooids (hototype QM GH4537): b. colony showing speckled test (QM GH2268): c, woid showing body organs (QM GH4584): de pooids showing incubating embryos (holotype GH4537); r. larva (QM GH4584). Scales; a, $5 \mathrm{~mm} ;$ b. 2 mm , c-c. $0.5 \mathrm{~mm}, \mathrm{r}, 0.2 \mathrm{~mm}$.
the Annotated Glossary). Paired lateral ectodermal ampullae alternate with the adhesive organs which are almost sessile, on short, wide stalks.

RIMARKs: The speckled appearance of both larval and adult test in this species is unique. The presence of developing embryos in the top of the oviduct is also unusual, for in other species examined in the course of this study maturing
embryos are in the atrial cavity where fertilisation probably occurs. The spherical shape of the larval trunk is also distinetive. The white tansparent, lobed colonies and small zooids sometimes projecting from the upper surface of each lobe resemhle small lohes of E. laysami. However, in the latter species the living eolonies are an iridescent blue and the larvac are smaller with a relatively long, narrow trunk.

Eudistoma laysani (Sluiter, 1900)

(Fig. 81)
Distoma laysani Sluiter 1900. p. 9.
Potycitor laysani: Sluiter 1909, p. 4.
Eudistoma lapsani: Millar 1975. p. 221. Not Tokioka
1967a, p. 119: 1967b, p. 394.
Disroma parva Sluiter, 1900, p. 6.
Eudistoma parvum: Kott 1957a, p. 77
? Polycitor regularis Sluiter 1909, p.
Polycitor (Eudistoma) olivaceum: Tokioka, 1942, p. 497.
? Liudistoma alhum F. Monniot, 1988, p. 210.
Distribuilion
Nfw Rfcorbs. New South Wales (Botany Bay, AM2206). Queensland (Currumbin, QM GH4539: Burleigh Heads. QM G9268 GH454I: Caloundra, QM GH4546; Mooloolabah, QM GH4545; Noosa, QM GH4543 GH4547; Tannum Sands, QM GH1499: Heron I., QM G10039 Gl1953 GH2267-8 GH4548 9; Sarina, QM GH4544). I. ord Howe 1. (QM GH4542).

Previousiy Ricorimed: New South Wales (Lake Macquarie - Kott 1957a). Palau Is (Tokioka 1942). Indonesia(Sluiter 1909. Millar 1975). Phillipines (Millar 1975). Hawaii (Laysan Sluiter 1900).

This is a common and conspicuous species in the western Pacific, and is found higher up the intertidal region than any other aplousobranch ascidian. The majority of the records are from the intertidal region, sometimes even at mid-tide level. Only the record from the Phillipines (Millar 1975) is from a greater depth (22 m).

Description

Esternal. Appearavce: Colonies consist of a basal mass of common test supporting numerous lobes. Each lobe consists of a cylindrical, sometimes branched stalk, and a slightly expanded head, its upper surface flat, rounded, or conical. Lobes are about 3 mm to 1 cm high. Stalks are firmer than heads, which have delicate transparent test. Abdomina of the zooids are crowded, parallel to one another down the length of the stalk and into the basal test. In addition to the abdominal portions of the zooids, the stalks contain faecal pellets, and both confer their colour to the stalk and make it quite opaque. Epizooites and other foreign particles are often on the stalk and basal test but never any embedded sand.

Atrial aperturcs are always antcrior to, or more contral than the branchial apertures, hut there are no systems. In small, juvenile lobes with up to 6 zooids the anterior ends of the zooids project separately above the surface of the head, but in larger colonies only the aperturcs protrudc. Larger lobes with rounded, club-shaped or pointed heads contain up to 100 zooids opening all over the surface of the head. In many specimens the size of the lobes from one basal mass is varied, and small, presumably developing lobes, such as those
described by various authors for E. laysani, are present.

The separate lobes of living colonies when inflated appear confluent with one another. They are white with 'pale antwerp blue' (Ridgeway 1886) iridescence. In preservative the blue pigment only occasionally persists and the colonies are pink or white.

Internal. Structurl:: Extended zooids are often particularly long, with a long, narrow oesophageal neck. However, the thoraces are seldom more than 1 mm . Contracted zooids are no more than 2 mm long. Zooids are narrow and much less robust than most other species of this genus. Both branchial and atrial lobes are large and triangular, and a distinct circular muscle surrounds each relatively short siphon. From 8 to 16 fine longitudinal muscles are on the thorax. Thesc extend along each side of the abdomen as separate fine muscles rather than wide bands. Circular muscles, beneath the longitudinal bands, arc also fine and are confined to the middle of the thorax. There are 16 long tentacles in a posterior row and further tentacles in 3 additional antcrior rows. The atrial siphon originates opposite the first row of stigmata, well down the dorsal surface. A long prestigmatal region is in the anterior part of the pharynx.

The stigmata can be more easily counted in this than in other species of this genus, possibly hecause of the relatively fine musculature. Only 12 stigmata are in the posterior row, but up to 20 are in the anterior row. The dorsal 3 stigmata in the anterior row curve up along the mid-line, toward the dorsal ganglion. The usual small, smooth-walled stomach is at the posterior end of the abdomen. There is an oval posterior stomach but it is not always distinct. Tubules of the gastro-intestinal gland extend anteriorly along the ascending limb of the gut loop.

Mature gonads and up 108 embryos are in the atrial cavity of specimens from Heron I. collected in February (QM GH4550). Specimens from Batehaven collected in April (MV F53397), from Botany Bay collected in May (QM GH4540), and from Caloundra (QM GH4546) and Noosa Hcads (QM GH4543) collected in November, have a similar number of embryos in the atrial cavity.

Larvae are small, the trunk only 0.4 to 0.5 mm long. The tail is wound halfway around it. There is an otolith and an ocellus, and 4 single median ectodermal ampullae alternate with the stalked adhesive organs.

REMARKS: The multilobed colonies, with dclicate transparent test on the terminal part of the lobes, and without embedded sand; small

Fig. 81, Eudistoma laysani: a, large colony (QM GH4541); b-d, smaller colonies (QM GH1499 GH4548 AM Y2206); e, zooid, with 4 mm of oesophageal neck excised (AM Y2206); f, thorax with incubating embryos (AM Y2206); g, larva (QM G9268). Scales: a, 2 mm ; b-e, $1 \mathrm{~mm} ; \mathrm{f}, 0.5 \mathrm{~mm} ; \mathrm{g}, 0.1 \mathrm{~mm}$.
zooids with fine muscles; and small larvae are all characteristic of the species, as is their whitishblue iridescence. Their colour resembles that of Ritterella prolifera (Oka, 1933), but in the latter species the lobes are sessile rather than stalked (see Kott 1972d).

A wide range exists in the shape and size of the lobes of these colonies, occasionally within the one colony (QM GH4540 GH4550). More often the stalked lobes are a uniform size in cach colony. Variations in their diameter are probably the result of growth. However, smaller lobes occur more frequently in the tropics than in temperate waters, and there may be a cline in the populations. The colonies resemble lobes of E. elongatum in the absence of systems, blue iridesence and small larvae, and it is possible that the latter species is conspecific, representing populations with long, rope-like heads at one end of a cline.

The type matcrial of Eudistoma laysani (Sluiter, 1900) from Laysan has small lobes, each with a single circle of zooids with their anterior ends projecting from the free end of the lobes. Millar (1975) recorded similar specimens from the Philippines and Indonesia. Millar's specimens contained small larvae similar to those in the newly recorded material. The zooids in the lobes of the Australian material usually are more numerous, crowded and not arranged in circles, but single circles do occur in the smaller lobes. Thus, until some character is identified to indicate different species, the specimens referred to in the synonymy and distribution (above) are regarded as eonspecific.
Tokioka's (1967a,b) specimens from the Palau Is and from Vietnam, respectively, with long. rather irregular colony lobes and relatively large larvae are not of this species. The colonies from Vietnam (Tokioka 1967b) resemble those of Eudistoma toealensis Millar, 1975, and the larvae also are similar. Larvae of the Palau Is specimen (Tokioka 1967a) suggest it is yet another species.

Eudistoma segmentatum (Sluiter, 1909) has a similar colony but a larger zooid than E. laysani. Eudistoma parvum (Sluiter, 1900) recorded from Laysan, and a possible synonym from Japan E. parvul" Oka, 1927d (see also Tokioka 1953, 1954b), is another similar species, although the Japancse colonies are solitary stalked heads rather than the multi-lobed ones of the present species.

Zooids (but not the colonies) of the present species resemble those of Eudistoma gracilum $\mathrm{n} . \mathrm{Sp}$. in their small size and fine muscle bands. The colonies of the latter species are flat sheets rather than separate stalked lobes joined to a basal
test mass or stolon, and the test is extremely soft and mucus-like.

Eudistoma maculosum n.sp.

(Fig. 82. Plate 16a-d)
Eudistoma renieri: Kott, 1957a, p. 74; 1972a, p. 10. 1972b. p. 171.
Eudistoma pryiforme: Kott 1972a, p. 9; 1976, p. 58 (part, speeimen from Mallacoota Inlet).

Disiribulion
Typf Locarity. South Australia (Ward 1.. 2025 m , coll. N. Holmes and S. Shepherd 31.3.82, holotype QM GH1304: Topgallant 1., 5 m , coll. N. Holmes and S. Shepherd 29.3.82, paratypes QM GH1278; Flinders 1.. Investigator Group, 8 m in caves, coll. N. Holmes 10.4.83. photo index PE 0024 R965/R967, paratypes QM GH2391).

Further Rfcoros: Western Australia (P't. Peron, AM Y1299 Kott 1957a). South Australia (Great Australian Bight - Kott 1972a.b; Ward 1., QM GH1282). Victoria (Mallacoota Inlet - MV F5482 Kolt 1976). New South Wales (Jervis Bay, QM GH4605),

Description

Colonies form firm, fleshy, flat-topped oval cushions to extensive fleshy sheets 0.5 to 1.5 cm thick, with rounded borders. They are fixed by the whole or part of the basal test. The surface is smooth. Zooids are in circular systems of 6 to 8. Living colonies are white with black zooids. In preservative all colonies are opaque, slate-grey to black with blackish to blue zooids and brown to tan pigment cells concentrated in patches near the surface of the otherwise whitish, cloudy, translucent test. These brown to tan pigment cells form an inconspicuous, mottled, rusty-looking pattern on the surface of the colony. South Australian specimens are white with black zooids. and the specimen from NSW is brown and white.

Sand is embedded in the middle layer of test and becomes less crowded toward the base. Sand is usually absent from the upper half of the colony,

Internal Structure: Zooids are robust with about 20 longitudinal muscles on the thorax that continue onto the abdomen in a wide band on each side of the mid-ventral line when contracted. In relaxed zooids the longitudinal muscle bands are separate from one another. There is an almost continuous coat of circular thoracic muscles. Circular muscles are on the siphons, but they do not form a distinct sphincter. About 20 long stigmata are in each row. The gut has the divisions characteristic of Eudistoma.
A single large embryo projects from the atrial cavity in colonies collected from Point Peron (WA) in January (AM Y1299), from South Australia in November (see Kott 1972a) and from

F1G. 82, Eudisıoma maculosum n.sp.: a, thorax showing muscles (holotype QM GHI 304); b, abdomen showing gut loop and longitudinal museles (holotype QM GH1304): c, zooid showing lower third of abdomen contracted up against middle third (QM GH4605); d, larva (AM Y1299). Scales: a-c, $0.5 \mathrm{~mm} ; \mathbf{d}, 0.2 \mathrm{~mm}$.

Jervis Bay in August (QM GH4605). The larval trunk is 0.9 mm long and the tail is wound almost three-quarters of the way around it. Larvae are unusual in having 3 large adhcsive organs cach with a short stalk and large, vertically elongated. oval platform of columnar cells in a shallow epidermal saucer. Bract-like epidermal ampullae are in the mid-line, one dorsal and one ventral to the base of each of the adhesive organs. Larvae have 3 rows of stigmata.

Remarks: This commonly encountered, robust temperate species resembles, and may be related to, the tropical species Eudistoma tigrum n.sp.

Both have the same pattern of surface pigmentation which, in preserved material appears as rustlike patches. They also form extensive rather sheetlike colonies with rounded borders, and have their zooids in circular systems. The principle distinctions between them are in the larvae - the present species having a larger larva with bract-like ectodermal ampullae and vertically clongated platforms of adhesive cells in the short, thickstalked adhesive organs, while those of E. tigrum $\mathrm{n} . \mathrm{sp}$. are smaller, have adhcsive organs with long narrow stalks altcrnating with median paired ampullae. Where larvae arc not available, the temperate - as opposed to tropical - range of the present species mast be relied on to separate it from E. tigrum n.sp. Larvae with the same elongate adhesive organs are known for E. glaucum, E. purpureum n.sp. and E. marianense Tokioka, 1967a, but the larval trunk in these species is much longer $(1.2 \mathrm{~mm}, 1.5 \mathrm{~mm}$ and 1.5 mm respectively), and their colonies are mushroomlike with short thick stalks (E. glaucum and E. marianense), or large rounded, sessile cushions (E. purpureum), rather than the extensive sheets of the present species. Eudistoma muscosum nom. nov. has larvae of similar length and the same elongate adhesive organs as the present species. The test is also darkly pigmented with tan and dark coloured pigment cells. However, the twotoned colour pattern of E. maculosum is not present, and the colonies do not form the same extensive sheets.

In one specimen (Kott 1972a, Wright 1.) the second and third adhesive organs are joined, and there is one long protruding ridge of columnar cells.

Eudistoma malum n.sp.

(Fig. 83a,b)
Distribulion
Type Locality. Queensland (Capricorn Group, Heron I.. side of bommie 10 m , coll. N. Coleman 20.7.73, AMP1 87, holotype QM Gl1939; Heron $1 ., 810 \mathrm{~m}$, coll. P. Kott March 1975, paratype QM G11940).
l-l'RIHER Rfcoriss. Qucensland (Capricorn Group. QM GH46.35 9?GH4851; off Gordonvale, QM (3H798).

Discription

Exilrnal. Appenrance:: Smaller colonies consist ol top- to mushroom-shaped lobes, often with an almost completely spherical hcad, about 2 to 3 cm diameter, on a short, thick stalk. The largest colony available (QM GH798) is an upright cone 4 cm high and 3 cm diameter. Sand is in varying concentrations in the stalk and sometimes extends up into the centre of the head. Zooids open all around the head, and are in circular
systents af 3 or 4 rooids. In lite the holotype colony was reparted atyollow ball ascidian'. However. the paratype and other colunies are shades of purple "hurnt sienna" at the top of the stalk to 'madder brown' on top; "cimamon rufus' shading to a transpatent stalk (Ridgeway 1886): and maroon purple with a sandy stalk. In pleservative colonies become translucent and grevish white with some minule (0.01 mm) hlushblack to brown pigment cells in the surface layer. and lairly evenly distributed through the remainder of the test. These cells are also found lying free in the space between the rooid and the lest. Olten it white suspension is in the surlace test. Usually pools of greenish-brown to brown pigment cells ate at the base of the statk. Sand cmbedded in the stalk sffects its colour. In preservative aoods are cream to ponk.
Ivilkina Siblic laki: Zorods are rohust but relatively short. about 3 mm long when contracted. I he attrial wiphon usuatly is 2 to 3 times the length of the hranchial siphon A bout 15 fongitudinal thoracic muscles continue along the side of the abdomen. On the thorax, these muscles tend to form a rather regular meshwork with the internal cinculat nuscles. Moderatcly conspmenous sphiticsers are around the siphons. Tliere are about 16 stigmata per row. The abdomen is of the usual lorm with gonads in the gut loop. The testis follicles sometimes form al fairly compact, slmost spherical mass of follicles at the side ol the distal end ol the gut loop. but sometimes are lousely disposed in the gut lerop.

Ip to 4 developing embryos are lined up, werlapping one abobther in the peribranchabl cavity. Latve, which are in both holotype and paratype colunics, have an elongate trunk 0.75 mm long with relatively long tail wound about twothirds the way around it. A row of \& rounded lateral ampullae 15 along euch side ol the median adhesive organs at the anterior end of the trunk. the ventral pair are llattened plates on a long basc.

Rywarks The larva of this spocies, with its long trunk. and narrow platedike ventral ectodcomal ampullic, is distinctive. However the adults. especially after preservation, have lew distinguishing characters excepl the evenly distributed splierical pigment cells and uphiglit colonies.

Liudisumma glancom has smilat stalked heads and rooids. although the present species lacks it. preen pigment. Rudistomer ghobextem lias a similar enlony but lacks the circular systems. The larval trunk of E. ligrom n.sp. is the same size as the present species. but its colonies are liat sheets rather than upright lobes and it hiss a distinctive
colour pratters in the surlisec lest. Preserved eolonies of the present spectes base a white suspension in the surface. and aceordingly it con be confused with E. anacmbutum $11 . s p$. which is distinguished by its law cushon-like colonies without statks. somaller pigment cells. and longer atrial sphons. E'udivomul muscosum nom. nov. has a similar compact spherical mass of testis follicles, but it has nore erowded and lagere pigment cells, lacks hoth the stalk and white suiface suspension characteristic of the present species, and its preserved \%oids are more intensely eoloured, being reddish-hrown rathor than pink to crean. One long-preserved specimen. possibly this specues. fram Heron I. (QM GH4KSI) hits last all colaur except for a wide collar of spherical orange vesicles around the duodennm

Eudistoma microlaryum n.sp.

(Fig, rise, d)

Tiro Lomentry Queenstand (North Siradbroke 1.. Prini Lookont, near low tide mark, coll. ^. Rozetelds 17.11.78. hulutypt OM GH 4520 : paratypes OM G154521).

Fikinik Ryontin Qucemanit (Hervey Hayo Qes G119.8).
the speecen has so tar heen reeorded ouly in sumbly babitats, from an amallf part of the southern Queensland cuaks.

DIserkelom

E:cilrmal. Ambalkavet: Colonics astle Halt mevesting sheets or cushions. up 101.5 cm hugh. adnd sombtimes with the naked upper surface divided into irregular lobes. The lest is almose transparent and allhough it ham sand grains embedded. the sand is relatively sparse in the lower hall of the colony and sometimes absent from the upper half around the thosaces sif the asoids.

The small zooids. which are 4 mm long when extended, are white and thread-like in preservative, and can he seen extending vertically through the transparent test. They do mut form systems. The separitaly opening atrial and branchial apertures cun he demonstrated hy washing a drop of stain across the surface of the colony.

Iqualenal. Sukuedrel:; Buth the branchial and atrial siphon are reladively short, each with a short splancter. Thoracic muscles are fine, ahout 12 fongitudinal hands and only ahoul 14 transverse ones. Longitudinal muscles extend alongeach side of the sentral hall tht the abdomen well separated from one another. They are not gathered into a cuntinuous wide bind. There are only ahoul 8 stignata por row. The oesophageal nech is long and Harrow, and the small, smooth-walled

Fic. 83, Eudistoma malum n.sp.: a, zooid (QM GH4638): b. larva (holotype QM G11939). Eiutistoma microlarvum nsp. (holotype QM GH4520): c, colony; d, zooid; e, larva, Scales: ad, 0.5 mm ; b,e, 0.1 mm ; c. 5 mm .
stomach is in the posterior end of the ahdomen. The duodenal area is long and tapers to a small. oval. posteriot stomach at the posterior end at the descending limb uf the gut loop.

A long, grape-like cluster of male lollicles at the left side of the gut lour slighly overlaps the pole of the gut loon the sype materal. has at single embryo in the atrial cavity. mature male follictes and the vas deterens lifled with sperem and expanded jutho a long spindle-shaped scminat vesicte at its proximal end.

The larve is small with a trank about (). 4 nom long. It has lateral as well as median ampultace, an ocellus and otulith.

R21-AtARK: Cotonies 111 this spectes are readily
 adso is sandy, invecting and lacks systems) hy its small thereat-lihe ponds.

> Eudibtoma musersan num. now (t-ig. 8 4)
> Puhtion imallit Stmen, whe p. 11
> Not Dishoma molle Ritter. 1900. p. Ents. Litrhisemba methe Van Vame (1)45, p. 128
Gil194) G11944 76113.39 GH4560 78, lifarl l.. GM
Sluiter 19(0) $)^{\text {S }}$

Descrubition

Exitrval Allitabavel: Must colonites are smooth, shiny and round to lorenge-shaped or irregular pillows about one 102 cm in mixinum extent and up to 0.50 m high. They ame fixed hy most of the basal sutface. The eolony from lizard 1. (AM Y2207) is larger. It is an uprght lohe at leastsem high and 4 em in diatneter. In life colonies oxcur in al vartely af colours in the range khaki. blive to hrown (Ridgew isy 18s6: "tawny-olive. "stjpat, "wood-brown'. "mustard-green". "clovehrown', "ulive", "olive-green". "bay". "bistre"). Oceasionally the colour shades from brown at one end fo lawny whe at the ather. In presenative the cotour becomes hlack-brown or hrown, and later a cloudy greenish-grey. In freshly preserved material a mass of opaque tan-coloured pigment cells $(0.04 \mathrm{~mm}$ in diameter) pate in the test at thuratie to desophageal level, helow the surtace of the colony. Also minute (0.02 to 0.03 mm) shiny reddish splieres are scattered in the best. The preservative staine reddish to brownish-vellow. In lireshly preserved material soovids are black, athough this persists only in the anternor part of the thorax. Zooids, especially in the candustyle.
gut and gunals, usuatly beeorne the red dish-brown colour ol the presersative. The test is rebatively tramsparent in preservative and os solt siand and lateral jeillets ented fir the test in the base of the colony. Zooids are in circular systems al ahoul S. with theit aterst aperture neat one another in the centre ol the circle.
 Smm long even when contracted) and rohush. Ihe acsophageal neek is relatively thick. The atrial suphon is 2 to 4 times lonece than the brandiat siphon, and both are relatively wide. Strong circulitr muscles surround each siphon fairly evaly along their length There are ahout 20 strong thoracic longitudinal muselc bands and more bumerous cerculat ones. Longitudinal hands continue alonge bach side of the abdomen separately ind are not gattered into a bind. They terminate just postcrior to the stomach on euth side of the intd-ventralline Thus. when contracted the oesophageal neek is shortened, the oesophagus atud retum are horisontally wrinkled and pleated, but the postermer end ol the gut loop is not much affected. About 25 stigmata are in the anterior row and only 18 in the posterior row. The dorsat patt of the anterior row of stigmata curves forward along each side al the dorsal mid-linc.

A long duodenal area and a distinct oval posterior stomach lie in the posteror part ol the wescending limb of the gut lonp. Long fuhtes of the gastro-masestas gland curve around part of the rectum apposite the duodenum. In spuctimens collected in November the testis folliales are mature and form a large, compact spherseal mass on the lelt side of the pusterior end of the sut loup. The vas deferens is conspicuous, with a long. spindle-shaped expansion packed with sperm as it extends anteriorly dorsal to the rectum.

One or 2 embryos ate in the atrial cavity bi specimens collected in August (QM GH134y) :un January (QM (3H4568). The larvall I unk is almosi spherical, and about 1 mm long. The 3 adhessue organs are of different sizes. Each has a wids. slighty clongated platform of adhesise ceclls, surrounded by athatlow ectodermal cup. The tait is wonnd about three-quarters of the way around the trunk The larval epidernois contains dark pignont concentrated in the 2 posteroorly projecting horns of the larval haemoeod - ane catch side of the base of the tanl. These larvac lave 3 rown of stigmata.

Remanks I Iving specimens are distinguished by their brown khiki-olive geen colour, hut in preservative hy the solt translucent test, mirtute, shiny, spherical (red in preservative) and opayme tan pigment cells, the large compact spherical mass

1.16. 84, Euffroma muscosum nom. nov.: a-c, zooids showing various positions of the atrial siphon (QM GH457 GH1349 (HH4570); d. thorax. showing dorsal end of row of stigmata continuing alongside mid-dorsal linc (QM GH4568): e, larva (QM GH4568). Scales: a-d, 0.5 mm ; e, 0.1 mm .
of testix lolliclas and the reddisithruwn ur black sooids.

The eype specimen (ZMA TU.801) is a solt. l'leshy, vessile cushion Irom which most ol the cobour is ouw lost leaving the test almost transparent. Some brown pigmeut remains it the rooids around cach of the apertures. Zooids are robust with a large compact mass of male lollicles. as in the newly recorded material. Although Slutter recorded lewer stigmatio, there are at least 15 in the type specimen, the exact number being dillicult (o) determine owing to the contracted condition of lite zoonds..

Ing-preserved colonies in which the colour his, fatied allugether can be confused with Eudisfoma murpurcum nosp. although the latter species has larges larvac. Eudistoma tigrum n.sp. Hso has robust /onds and looses its colour in preservatite. but has shect-like rather than cushion-like colonies, and smaller larvas with flattened leaflike ampultae und small, narsow-stalked adhesive means.
'The accumulation al darh pigment in the 2 posterior horns of the larval hememococe is reminiscent of the angolanum group of Endixpoma. although these have more ampullae than the larvae of the present spectes.

Budistoma nvalum (Herdman, 18K6)

(Fig. 85a-f)
Fsommaplidum ovatum llerdman, 1886, p. 246.

F. 43 (part, specimen tron \$1. 773).

Poblyeror armactes Sluiter, 1909, p. 13.
Fulbriten waber Siluiler, 1409, م. 25
Eiddistoma pyrifurme: Johioha, 1067a, p 110.
? Fudtstama didgar Monnist, 1985. f. 215

Niw RI conats Oucendiand (Hency Bay. QM $0920{ }^{\circ}$ G1193x GH4544, rannum sands. QM G114595 \%: Caplewn (iroup. QM (illgis sill97) (iH254\% y GH4601 4, ficppoon. OM GH4597: Redbill I.. QM GHAbOU: 1 izard 1., 2 M Gl 1970.

Proverists R+cigktan Western Austalia (Cape Boilcau Hastings 1931). Quecnstand (1.ow Ix OM
 Strail Herdman 18st: Ciull of Caspentaria AM Y7060 Kutl 19720). Indnnexia (2MA Tllwis yype L sabur Sluter, 1909). Patau and Gilbert is (Tokiohas 1967:1).

Desckipion

Extrrnal Arbeabanca Colomes are firm encrusting sheets, up Iolcm thick They grow over irregutarities in the substrate so that the surface appears raised into lobes and swellings. Otherwise the sufface is cven, without projections or
depressions. Sand is evenly distributed thronghoul the wherwisc colourless und transparent icst, but possibly is less crowded at thoracic than at abdominal level. Faccal pellets are also in the test. Zonids are pink. with a brownish stomach.

Zooids are in circular systenis. 2.5 mm in diameter with up to 7 roulds per system. Rooid openings are rensonably conspicuous owing to the interruption of the sand where each opens to the surfite. They are evenly spaced at the surlace but internally abdomina cross one another irregularly.
tnitreal Simbethst. Zooids are relatively small, the contratced thorax being yuite narrow and only 1 mm long. The atrial siphon is long and muxcular. The branchial siphon also is well developed with a wide hand of branchial tentacles Branchial and athial lobes are rounded. Abour 12 1025 thoracic longitudinal musele hands overlie ahout 30 transverse ones. Longitudina! mascles continue in two long hands on each stde of the abdomen. Often the whole abdomen is folded up against the thorax owing In the strong conlraction of the ventral body muscles. There are at least 20 stigmata per 10 .

Gonads, stomach, and the usual divisions ol the gut distal to the stomach, are in the posterion and of the abdomen. They ate obscuted by the contraction of thexe small anolds, in which the ocsophagus is wrinkled and rectum kinked and a wisted along the whole lengts of the zooid.

Up to 5 embryos are in the atrial cavity of specimens collected in April fiom central Queensland, in April, May and Ocloher from Heron 1. and in July from Redbill 1. (QM GH4595--9 GiH4604 GH4600). Laryac are wonall, the Irunh only 0.6 mm long. The tail winds almost threequarters of the way around the trunk to the left of the adhesive organs. Three slender-stalked adhesive organs are in the median line anteriorly. Dursal and ventral median ampullac each have a purietal hranch on each side. Each of the 2 lateral ampullae on each side also have a parietal branch nesar the have, Fine projectuns From the cctoderm around the apertures evtend into the larval test.

Rlmaras. The other surdy species of Euthisfoma known from tropical waters in which the cooids are in simple circular systems withous actual cloacal cavitics are E. amphum and E. puriforme. The latter has pyrilorm colonies that dislinguish it from the present species. Eudistoma amplan has large zooids and larvat and contains large, spherical symhionts in the test. as well as the sand, and the sand is seldom evenly distributed an it is in the presenl species.

The sandy temperate specics 8 . , vahulowum, has thicker colonies than the presont species. the

Fig. 85, Eudistoma ovatum: a, circular systems seen from the surtace (QM GH4596); b,c, thoraces with incubating embryos (QM GH4604); d,e. gut loops from contracted zooids (QM G11969); 1arva (QM G1H4595). Liudistoma protwhm n.sp.: g a system of $700 i d$ s from the surface (paratype QM GH4607): h, zooid (hototype QM GH4606). Scales: a. 2mm: b-e,h, $0.5 \mathrm{~mm} ; \mathrm{f}, 0.1 \mathrm{~mm}$: g. 1 mm .

Gloriace of the eolony in not as smouth and the suld hare bmaller. With not more than 10 stigmatak per row.

Hastings (1031) concluded there were 3 sandy
 E. chatam (Herdman. ISB6). Fo angulanam (Michatsen. 1414) and E. prriforme (Hedman. 18isf) She compared al large (lome wade and Yem high) colony from Cape Boilcau. north-western Austrislia (that resembles the netbly recorded matermil) with the (ype specimens of E. owtum Fendman.. 1886) and a smaller specitnen from the (ircat Batres Reel, and considered all 3 of these specunch, 10 be conspecific. A part of the Great Basrier Reef specimen exfmined by Hastings is in the Austratian Museum (AM Y|3510), it appears part of the colony (hasected along the tongtudinal axis) fieured by Hastiags (1931. pr. 85. Levt fige sic), In this spectmen the test is impregiated with sand, rooids upen alt atong the surlices. and although a lew abdomina ran paralles to the long axis. mont lic almost perpendicula fo the surface and eroms one another. Io appears i) Slice off the surtiace of if birger colony rather than a furtion of a sataked one.

Ludistoma belgare Monmon. 1988 hats smitar colong. sombeds and larvase to hase of the present species fand appears a synonym

Although Pofleited woles Sluiter. Hop was reported to hase only fo wr stigmata per row. recxamination of the single known xpeemen (2 MA I U805) has shown of to have a similar number to that lound in the newly recorded specimens. with an equally wide band ol branchial
 this species.
the line terodermal projections into lle larval test around the apertures acelle in many Eithliso fona spep. (sce Anootated Glossary: larvae).

Fiudistoma pratulum in sp.

(Fig. $85 \mathrm{~g} . \mathrm{h}$)

 low water mark, woll. I' Kna May 1987 . moletype ()M
 911.85 . paratype OM (i114807).

Fikthre kis atim Anow
D) we R110410\%
 to 8 cm long. 4 cm wide and about (em thick) firm hut Itsoly and sather erregulas stacets. In lite they arecreamish or "sage-green' with "pea-green' somdk (Ridgeway $188(1)$. Slighty thanslucent and with a slightly rough rather than smonth burface. In preservative the test is brownish-grey. sometimes darker at one end than the other as a reault of
the crowdmg al minme dark pigment cells. Zoods are browneli-crearn in preservative, the stomach blown and tle embryos orange. There are shiny hrown pygment celle 0.02 to 0.03 mm in the test and lying in the spate between the zooid and the that, probably released in blood from severed vessels some whut suspension, simila to that lound in Eiudrsoma ampematum n.sp., is in the suldice test, and large pools of dark pigment cello are in the basal test. Zoonds are arranged in circles: of 5 or 1 .
 sire, about 5 mm lone in a fairly relatiod condition The atrial siphon is often much longer than the branchial siphon. The sphincter muscles around conch aperture are narrow and not conspicuous. About to to 12 fine longitudimal thoracic museles confinte alongeach side of the abdomen in seteral hunds. Abour 25 line circular muscles are on the thoras. Branchal tentacles are confined to a nurow pone at the base of the branchial siplion, ardel are in 3 circtes. Ientacles are not sumerous. about of targer ones are in the outer circte. (7) nualenate-sised ones in the second circle. and more numerous and irtegularly distributed smalle ones in the anterior circts. Stigmata number 25 in the anterior row which curnes anterionty along cath side of the mid-dusal line, but only is in the posterior riow.

The gut has the usun sutdivisions found in this genus. The uval pesterior starach is well defined. 1.arge parilorm lesis lollicles are tueked into the pole of the gut loop al specimens collected in May (QM (iHAKO6). A single embryo up 00.75 mm long is in the atrial carity of the zooids of this spectmen, allhough mature larvate were not developed and their structure is not known.

RI makk Although these colomies are green. sometimes with greell zowids, they are wat the same onayue shiny green of Eidedsione slaw $\mathrm{man}^{\text {g the }}$ extensive, lat, irregular transtucent colonies with a rather rough surlace also distinguish them Irom f. ghatum and L. masosum nom, nos. The lutter species atso has spherical pigment cells about the sume diameter as those in the present species. flowever, the larger. crowded. gramular-looking dan cells of E. muscessmm nom. not. are not present in f: pronftom. Zoord eolour in preservative is also different E musorsum nom. now has brownish-red rooids the present species aremishcream to brown ones. Eildistoma anarmatwn does not lave the shiny. spherical cetts of the present specics. Albough the larvate of E. pratultw are not known, large embryos indicate the larvaltrunk conuld be at least 0.75 mm long, te. simular to fi: materasum hom. now.

Eudistoma purpureum n.sp.

(Fig. 86)
Distribullon
Trap Locirry Qucensland (Wistari Reef, under rubble near reef edge, coll. P. Koti 1.11.86, holotype QM (3H4466; 30.10.86, paratype QM GH4467; Heron I., January 1983, paratype QM GH4455).

Furtifer Rfcoriss: Queensiand (Capricorn Group, QM G11972-6 GH4456-65 GH4481 GH4484 GH4491 GH4561 GH4567 GH4581 GH4585).

Description

External. Appearance: Colonies are sessile cushions, fixed by a flat base, rounded on the upper surface, usually 2 to 5 cm in diameter and up to 2 cm high. Only occasionally is the colony divided into 2 or 3 lobes arising from a common base. Living specimens are completely opaque, "indian-purple' or "hyacinth-blue" (Ridgeway 1886) in colour, the surface smooth and shiny. In preservative colonics are grey-black to cloudygrey, and sometimes the test becomes translucent with darkly pigmented greenish-black zooids showing through it. Minute dark pigment cells are scattered through the test, but are especially concentrated around the zooids, and in the body wall. Also small cloudy crowded test cells confer a cloudy appearance especially evident in the upper layer of test.

Four to 6 zooids form circular systems with the atrial apertures opening in the centre of the circle. Zooid openings are relatively inconspicuous on the surface and no depressions or other marks are on the surface.

Sand is in the base of the colony and sometimes extends up into the centre of the base of the colony, but never reaches the upper half. Oval faecal pellets in varying quantities are in the test, which is gelatinous and soft but turgid.

Internal Structure: Zooids are about 6 mm long, and the thorax is relatively wide. The atrial siphon is often up to 3 times the length of the branchial siphon. Variable concentrations of minute dark pigment particles are in the body wall. There are about 12 longitudinal thoracic muscles and more numerous circular ones. Circular muscles are along each siphon.

In the pharynx is a fairly extensive prestigmatal zone, and about 20 stigmata in each row, the most ventral ones reducing in length. Dorsal stigmata in the anterior row also are reduced in length and the row curves anteriorly along the mid-line to reach up along each side of the neural ganglion.

There is the usual long oesophageal neck. The smooth-walled stomach is in the posterior end of the abdomen, and a long duodenal area, but the posterior stomach is not well defined and often
the mid-intestinc appears uninterrupted. The rectum originates in the pole of the gut loop. The gastro-intestinal gland consists of long tubules that branch from the main stem of the duct near its origin (at the pyloric end of the stomach), and extend around the rectum at a level with the stomach.

Gonads are found maturing in specimens collected in October and November. Male follicles are relatively large and pyriform, and a large ovum is at the side of the gut loop. The vas deferens is particularly conspicuous, dark-greenish in preservative,

One or 2 embryos are in the atrial cavity of specimens collected in late October (QM GH 4467), November (QM GH4457 GH4466) and January (QM GH4455). Larvae arc large, the trunh 1.5 mm long, with the tail barely reaching to its anterior end. Large median ampullae alternate with the adhesive organs, and accessory ampullae arise as lateral bract-like expansions from the stalk of each adhesive organ. Larvae have 3 rows ol stigmata, as do those of E. maculosum n.sp. and E. purpureum n.sp. Fine ectodermal projections into the larval test surround the apertures as in E. ovatum and other species (see Annotated Glossary: larvae).

Rimarks Living, the specics is distinguished by its brilliant, opaque, purple colour, smooth shiny surface and entire (rather than lobed) colony. Preserved specimens are distinguished by the absencc of symbionts (present in E. amplum), smooth, round, sessile colonies, absence of any red or orange, and dark-greenish zooids. Muscles of the atrial and branchial siphons are not concentrated into a distinct bulging sphincter as in E. angolanum (see above) and sand is only sparse in the base of the colonies.

Tokioka (1967a) assigned specimens from the Marianas and Gilbert Is to E. angolarum. These specimens are diverse - some have embedded sand, others do not; some have vesicles in the surface test while others lack them and there are from 12 to 20 stigmata and 10 to 30 longitudinal muscles. The lack of characteristic siphonal sphincter muscles in any of Tokioka's specimens suggests these may not be conspecific with E. angolanum. The range in all characters recorded by Tokioka suggests his material represents more than one species. It could include specimens of E. purpureum. However, zooids are reported yellowish-orange or reddish-brown, the dark colour of the vas deferens is not described, and larvae have more numerous epidermal ampullae than the present species. Thus, at this stage E. purpureum cannot be positively regarded as

Fig. 86, Eudistoma purpureum n.sp.: a, zooid (paratype QM GH4467), b-f, thoraces showing various positions of the atrial siphon (QM G11974); g,h, larvac at successive stages of development (QM GH4457). Scales: a-f, $1 \mathrm{~mm} ; \mathrm{g}, \mathrm{h}, 0.2 \mathrm{~mm}$.
conspecific with any of the previously recorded species of the genus Eudistoma.

Eudistoma maculosum n.sp. ($>$ E. renieri: Kott, 1957a) from Cockburn Sound has larvae with the same bract-like accessory ectodermal ampullae as the present species. However, its larvae are smaller and the colonies sheet-like with a distinctive colour pattern - although that is not conspicuous in the preserved material. Eudistoma marianense Tokioka 1967a also has similar larvae to those of the present species but it appears to lack the lateral ampullae.

Eudistoma pyriforme (Herdman, 1886)
(Fig. 87a)
Psammaphlidum pyriforme Herdman, 1886, p. 419. Eudistoma pyriforme: Tokioka, 1950, p. 120. Not Kott

1957a, p. 75 ($>$ Eudistoma sabulosum n.sp.); 1972b $(>$ E. aureum n.sp.); 1976, p. $58(>$ Eudistoma sabulosum n.sp. and E. maculosum n.sp.)
Distribution
Nfw Records: Queensland (Bargara, QM GH4552).
Previousi.y Recorded: Queensland (Torres Strait Herdman 1886), Palau Is (Tokioka 1950),

Description

External. Appearance: The colony has rather irregular, rounded to flat-topped lobes joined to common basal test. They are up to 2 cm high, one to 2 cm in diameter on the upper free surface, and they taper slightly toward the base. The test is packed with sand which obscures the circular systems, each of about 6 zooids, opening on the upper surface of the head. Zooids are white in preservative.

Fig. 87, Eudistoma puriforme (QM GH4552): u. colony. Eudisfoma reginum n.sp.: b, view of surface showing branchial apertures surrounding cloacal depression and vesicles in the test (QM G11951): e. zooid (OM GH4489), d, dorsal view of abdomen (QM GH4489); e, larys (QM GH4489). Scales: a, 5 mm ; b, 1 mm : c,d. 0.5 mm ; e, 0.2 mm .

Internal Applarance Zooids are relatively small, about 2.5 mm when contracted. They have 5 to 10 widely separated longitudinal muscle bands on the thorax, and these continue along the abdomen in a single wide band on each side. The atrial siphon is longer than the branchial siphon.

The gut has the usual rounded stomach. long duodenal area, and large oval posterior stomach. In contracted zooids, the intestine makes a horizontal loop across the abdomen behind the stomach.

There are no embryos in the newly recorded specimen (collected in May).

Remarks: The present species is distinguished from other sandy species by its separate lobes. rather than flat, investing colonies. It resembles E. glohostum 10 some extent - however, in the latter species. zooids are more crowded, are not in circles, colony lobes are more rounded than flat-topped, and the surface test over the head of the colony is always free of sand.

Eudistoma reginum n.sp.

(Fig. 87h-c. Plate 16e,f)
? Eudistoma amplum: Millar. 1975, p. 219 (par1, specimen from Tocal with eloacal cavity).
Distrimetion
Typi Loos slir: Queensland (Heron I., on underside of rubble behind reef edge LWM, coll. P. Kott March 1975, holotype QM Gll948: Heron I., coll. P. Kott September 1976, paratype QM G11950; Wistari Reef, coll. PKou July 1976, paralype QM Gll949: Tryon Reef. coll. P.Kott September 1975, paratype QM G11951).

Furbirk Ricorbs: Queensland (Capricorn Group. QM Gll969 GH888 GH444751 GH4485 90 GH4492 GH45226 GH4580 (iH4586; 1.izard 1., QM (j) 1966). Describilon

Exti:rnal Appearanct In life the colonies are "aster purple' (Ridgeway 1886) and form smoothsurfaced cushions to sheets from about 3 up to $20 \mathrm{~cm}(\mathrm{QM} \mathrm{GH} 4524)$ in maximum extent and from 0.5 to about 2 cm thick. Preserved they are brownish-orange, hard, that and rather leathery. The preservative is stained a bright orange. The border ol the colony is rounded and slightly raised above the upper surface. Sand is in the base of the test and in patches throughout, sometimes just beneath the upper surface, In some colonies a sandy border around each system is seen through the reddish-purple test. Occasionally sand grains are crowded. Small spindle-shaped dark pigment cells in the test immediately surround the zooids. Large $(0.3 \mathrm{~mm}$ diameter) vesicles are present at all levels through the test, particularly conspicuous (but never crowded together) in the upper surface between zooid openings. They contain crystalline material. Small. tan, soft-looking, opaque. pigment cells are crowded between the large vesicles. Oval faecal pellets are also in the test.

About 7 or 8 zooids are in each circular system. The systems are about 3 mm in diameter. Most of the atrial apertures are close together around the edge of a depression in the centre of each system. Others open in the centre of the depression, and are not associated with its rim. The 3 anterior lobes of those atrial apertures around the edge of the depression arc inserted into corresponding lobes of the test around the rim which projects inwards, over the depression. to form a lobed cloaeal aperture over a rudimentary cloacal cavity.

Inifrnal Structuri: Flecks of orange pigment in the body wall of zooids and emhryos colour them orange. Zooids are robust but relatively short (about 4 mm long contracted) and narrow with strong musculature consisting of about 20 longitudinal hands on the thorax. Circular muscles are morc numerous forming an almost continuous coat. Circular muscles on the
siphons are strong, evenly spaced along the length of the siphon, and not gathered into a distinet band. The posterior end of the abdomen often is found bent up sharply against the anterior part of the rooid.
Stigmata are about 16 in each row, but are dillicult to count. The stomach is small and smooth, the duodenal area long. A large, oval, posterior stomach, separated from the rectum by a short constriction in the pole of the gut loop occupies most of the mid-intestine. Thin-walled terminal ampullae of the gastro-intestinal gland surround the rectum and duodenum in many specimens.

Gonads are a mass of pyriform follicles, with a large egg on the lcft side of the gut loop. Two or 3 embryos arc in the atrial cavity ol specimens collected in October and Novemher (QM GH4448 GH4450). However, maturing gonads occur in May (QM GH888). 'Ihus, it is possible there are two breeding seasons.

The larval trunk is 1 mm long with a short tail, barely reaching the anterior end of the trunk. Larvac are unusual in having patches of brown pigment in the posterior horns of the haemocoel - one on each side of the base ol the tail, and in the stalks of the adhesive organs. Ampullae are only in the mid-line between the adhesive organs. one between the 2 upper ones and 2 hetween the 2 lower ones.

Remarks: Like others in the angolanum group. E. reginum has large vesicles in the test containing crystalline material, circular systems with a shallow, rudimentary cloacal eavity, anterior lobes, of the atrial apertures inserted into the test around the perimeter ol the cloacal cavity and folding inwards to form a rudimentary cloaeal aperture, and unusual brown pigmentation in the larval haemocoel.

The species has much smaller cloacal systems, shorter siphons, usually less sand in the test, and shorter larval trunk than Eudistoma carnosum n.sp. Endistoma angolanum has a red test packed with embedded sand, $/ 00$ ids with long, snake-like atrial siphons wit ha hulging sphineter muscle, and larvae with numerous lateral ampullae. Eudistoma multiperforatum (Sluiter. 1909) has tough investing colonies with red test. sand embedded in the hasal half of the colony and preserved colonies resembling those of the present species; but its zooids are not arranged in circles, and the atrial siphons are short (see ZMA TU809.I, TU809.2).

Eudistoma muscosum nom. nov. also has dark pigment in the posterior horns of the haemocoel but lacks the cloacal cavities in the test.

Eudistoma sabulosum n.sp.

(Fig. 88. Plate 16 g)
Eudistoma pyriforme: Kott, 1957a, p. 75 (part, specimens from Port Noarlunga); 1976, p. 58 (part, specimen from Western Port).
Distribution
Typf Locality: South Australia (Topgallant I., 5 m , coll. N. Holmes 29.3.82, holotype QM GH937; Ward 1., $1-5 \mathrm{~m}$, coll. N . Holmes 31.3.82. paratype QM GH4591).

Furthfr Rfcords: South Λ ustralia (St. Vineent Gulf, QM GH4588). Victoria (off Lakes Entrance QM GH4587; Bass Strait. MV F54583, QM G11864 GH4589; Western Port, MV F53405, QM GH4590).
Previously Recorded: South Australian (St. Vincent Gulf - AM Kott 1957a). Victoria (Western Port MV Kott 1976).

Description

External. Appearance: Colonies are sessile rounded to irregularly-shaped cushions with rounded borders, up to 4 cm in diameter and 2 cm thick. Colonies are solid. The test, especially in the outer layers, is packed with sand which dominates the colour of the colony. The upper surface, subdivided into protuberant, rounded swellings, resembles a cauliflower, Zooids are in circular systems, about 5 per system. The atrial apertures in the centre of the circle open onto slight conical elevations. The branchial apertures are in depressions around the base of these elevations.

Between the sand, the test is colourless in preserved specimens. Abdomina of the crowded zooids criss-cross one another, but thoraces lie parallel, with only thin layers of test separating them. Thus, when the zooids are contracted, the upper layer of the colony has a rather loose consistency. The crowded sand makes the test hard, cnclosing rigid compartments that contain the rooids.

Internal Structure: Zooids are relatively small and muscular. Short and inconspicuous sphincters are around the apertures. The atrial siphon is longer than the branchial siphon. There are about 30 longitudinal thoracic muscles and an almost continuous layer of circular muscles. Stigmata are only 8 to 10 per row. The gut has the usual smooth, round stomach, long duodenal area, and oval posterior stomach. In contracted individuals, the intestine forms an S-bend or horizontal loop just posterior to the level of the stomach. Sometimes the whole posterior end of the abdomen is bent up against the zooids. Up to 6 embryos are in the atrial cavity of specimens collected in January (Kott 1957a). The larvae are small, the trunk being 0.5 mm long. The tail is wound three-quarters of the way around it.

Fig. 88, Eudistoma sabulosum, n.sp.: a, section through colony showing arrangement of zooids (holotype QM GH937); b, thorax (QM G11864); c, larva, dorsal view (QM GH4588). Scales: a, 2 mm ; b, 0.5 mm ; c, 0.1 mm .

Adhesive organs have long, narrow stalks. There are 2 pairs of long lateral ectodermal ampullae, and unpaired ampullae dorsal and ventral to the adhesive organs in the mid-line, but no median ampullae alternating with adhesive organs.

Remarks: The species is distinguished from the tropical Eudistoma ovatum by its irregular, cauliflower-like upper surface, the slight conical elevations supporting the atrial apertures above the surface of the colony, and its smaller zooids with only about 10 stigmata. Zooids of both species contract in much the same way, with, in extreme cases, the abdomen folded up against the rest of the zooid. Larvae of both species are small, although the tropical E. ovatum has median as well as lateral ampullae, while the present species lacks the median ampullae that alternate with the adhesive organs.

Eudistoma constrictum n.sp., another sandy species from temperate Australian waters, lacks the circular systems of the present species and has a much larger larva.

Eudistoma superlatum n.sp.

(Fig. 89)

Distribution

Type: Locality: Western Ausiralia (Shark Bay nr. South Passage, $10-15 \mathrm{~m}$, coll. L. Marsh 8.4 .79 , holotype WAM 822.83 QM GH2136; Abrolhos Is, Easter Group, coll. P. McMillan 16.5.63, paratype WAM 189.75).

Fwerner Rtooris: Wentern Australia (Montebeflo Is. WAM 770.83: ? Port Hedland. WAM 769.83; Houtman's Abrolhos. WAM 7hR.83).

Drecraxion

Fxtlrnal Appearavce: The holotype colony is massive and fleshy, 8 cm long, focm wide at the hase, and 6 cm high. It is fixed to the substrate by the whole of the base. The upper part is divided into 10 lobes. each lobe oval in section. No zooid systems are formed. The test is lirm and gelatinous. more or less opaque and crowded with cloudy cells that are pinkish-beige in preservative. Zooids are crowded, pink in preservative. and both openings are in inconspicuous citcular areas of thin test all over the outer surface of the lobes and the sides of bisal hialf of the colony. The outer surface of the colony is completely naked, and although faecal pellets are emhedded in the test. there is no sand. The paratype colony is a single oval head about 5 cm long and 4 cm in diameter with a shori, thick fleshy stalk.

Intirnal Sirectere Zooids are up to ahout 2 cm loug. They are slender and have a long. delicate, posterior abdominal vascular extension. When contracted the gut is folded up into a wide loop that projects lrom the side of the abdomen. However, in extended zovids there is the usual long ocsophageal neck. Both apertures are at the anterior end of the zooid. The atrial opening is sometimes on a long siphon, but the branchial aperture is almost sessilc. About 20 fine longitudinal muscle bands are on each side of the thoras. These continue along the ahdomen in ahout 3 wide bands which converge into a smatl, pointed projection on each side of the base of the muscle-free vascular stolon. About 40 line. transucrse muscles on the thorax, form a fine mesh with the longitudinal muscles,

The branchial tentacles are in at least .3 rows. The prestigmatal area of the pharyns is only shallow. I'he anterior row. which inclines formards along cach side of the mid-dorsal line has 34 long stigmata, 26 in the middle row. and about 24 in the posterior row. The small, smooth stomach, long duodenal area, ind oval posterior stomach are all in the posterior end of the abdomen as is usual for the genus.

No gonads were detected in the holotype, although they are presemt in the gut loop in the paratype, which also has a single embryo in the atrial cavity - protruding slightly from it in these contracted specimens. The delicate and long, posterior vascular stolon in this species may be associated with the large sire of the colony.

Rumarks Although Eudisfama contains species with extensive shect-like colomies, it has

Fici 89, Etdivoma superiatum n.sp.: a, colony (holotype WAM 822.83); b-e, pooids (holotype QM GH2136); f, first row of stigmata on left side. Scales: a. 2cm: b-e, $1 \mathrm{~mm}:$ f. 0.5 mm .
few speces with massive, hulky and flesty iohed colonies tike the present species. In this, the species resembtes Sisillina spp. and Psecudodistoma spp. Sigillinu fantusumu and S. Hgra sesemble the present spectes in lacking the usual sigitlinid muscte fibres and epicardial evtension respectively on and in the vascular stoton. However, pooids of the present species are smaller than those of Sigillina spp.. and they have the longer oesuphaseal neek of Eudistoma, the heart is at the posterior end of the abdomen, rather than in the posterior abdominat extenxion as it is in Pxectdodistoma. Eudistoma glaucum is the only other known species of Eudistoma with a long vascular stolon, although it is not as long as in the present .яpecies.

The regular arrangernent al pooids, without circular systems. resembles that of the stalked species Eudistoma glohosum and fi. clongatum and a lew sandy species (E. comserictum n, sp. and t. microlarvum n..sp.).

This large, fleshy colnny, with its characteristically eudistomid rooids and long. delicate vascular stolon, is readily destinguished trom other species of the genus.

The colony from Port Hedfand recorded above is fong and rope-like, and athough ite rooids seem to be the same as the type material, they are badly mutilated and the identificatom needs confirmation.

Eudistuma tigrum n.sp.

(Fig. 9())
Eudistemar riguda: Kont, 1981, 5. 151.

Tyיi Larniliy. Quecnsland (llemon I., rubble latund coll. P. Koth, Augus 1975, halowpe QM Gille41: Wistari Reef. kw water marh, rubhle rome cull. P'Rort Augus 1975. paratypes QN G11442 4. Wistan Recl. coll. P Koll 6.8.82, paratype QU GHI 362.

Firther Rrcorbs: Westetn Aushalia (Hummans Abrolhos. QM GH2135, WAM 834.83). Qutersland 1Hervey Ras, UM GH4559 n0; Capricorn Group. QM

Dusceromorn

External Appiaranct. Firm, gelatimas cobmies are circular, oval or slighty irregular tushions or sheets. up to 5 cm fong and from 0.5 If 1.5 cm thick, with a sneoth, sand-free surface. They are fixed by the whole of the hasal surface.

In ble more or less circulan patches of black or "gallstone-yellow" (Ridgeway 18×6) pigment anc in the surface test. These patclass, up to about 0.5 cm in diameter, are separated by hroad (ahout 2 (11 3 mm wide) areas of grey or white test. In preservative the whilish ateat hecome reddish-
brown. rust colnured or brownish-yellow, the pigment ernatianed in sphetical pigment eells 0.02 to 0.03 mm in dianneter. Thic darker pigment. contaned in irregularly shaped cells. lades in preservative and the patches that were darkly pigmented in tife becone translucent. Ihe colour pattern is conlined th the surface test, and the remainder of the test is clowdy and transtuent. A little sand is embedded in the hasal tex. hut absent elsewherc. Faccal pellets ale in the cest.

Zoords are in crecular systems of 5 or hroods The systems are independent of the pignem patches, and are about 2 men in diameter. In freshly preserved zonids the tomach and the proximal part of the intextitic are green.
 only about 4 mm when contescted, and up to 8 mm when extended. Strong circular musclea surround Each siphon. The atrial siphom is often long. about 3 times the tength of the branchial siphon. Aboun 20 longitudinal mustles are on the thoras. axtending onto the adbomen in 2 or more bands. The inner layer of circulan musctes on the thonad is thin. hut lorms an almost continumes coat of allesst 25 band. Branchial tenocles are in 3 circles of aheut 12 or more. Only al fairly shallow ninperforated area of pharyns is anterion to the stignata. Stigmata are 18 in the posterior sow. 22 in the next row, and about 24 in the anterion row (which inctines forward. along each side of the mid-dorsal line).

J licre is the usual small smooth-walled stomach in the posterior end of the athomen. Alongatmost clliplical posterios stomach is in the posteriot end of the descending limh of the gut luop. Bong tubules at the gastric gtand extend anteriorly along the ascending limh of the gut loop, Ievel with the duodenal area. and a mass of vesicles surrounds the duodenal areas.

One or 2 relatively large embryos are in the atrial cavity of specimens coltected in March (QM (if1943), hut not in, luty or August. The tarval trunk is 0.75 mm long. and the broad tail curves up across the felt side of the anterion end of the trunk at the hase of the ampultale, and then contintues posteriorly along the mid-dorsal line. reathing (1) ahout thice quarters of the distance flong the dorsal horder Large median ectodermal ampullate alkernate with the 3 stalked adhesive organs in the anterine midure the statks of the adtessive urgaus are thin, but not long and there 1. at circutar knew oll adhesive cetts in a shallew cpidermal cup.
RImakne. The prgment pattern in this species resemhles that of E, mandrosum nsp which is distinguished by its larger larva with bract-like

 atrial opentngs in the centre of irregulat circles of the larger branchial openings (QM GH1354); e,d, zooids, showing various positions of atrial siphon (QM Gll942 (iH1354): e. larva (QM Gll943). Scales. a. Icm. b. 2 mm ; c, d. 0.5 mm , $\mathbf{e}, 0.2 \mathrm{~mm}$.
ectodermal ampullat that emhrace the base of each adhesive organ and the long, enlarged platforms of adhesive eells. The pigment pattern is less conspicuous in preserved material, although large dark pigment cells and smaller tan ones persist for a long time in preservative. Eudisfoma muscosum nom. nov. has a regular eushon-like colony, brownish-red ooids with a large spherical mass of male follieles, spherieal brown-red pigment cells (0.0 .2 to 0.04 mm in diameter) and a larger larva (trunk 1 mm long) than the present species. Eitdistoma purpureum nosp., also has rounded cushion-like colonies rather than the more extensive sheets of the present species. a dark vas deferens, and its larvae (runk 1.5 mm long) are larger than those of the present species.

Larvac, with their broad tails curving around on the left side of the larval trunk, resemble those of F. githoriride, although the ampullaue atre different.

Colonies, rooids and larvae of specimens from Fiji assigned to E. rigida by Kot! (1981) are identical with the present species. Specimens from French Polynesia provisionally assigned to E.
rigidum by Monniot and Monniot (1987) have smaller colonies and smaller larvae (less than $0.5 \mathrm{~mm})$ and do not appear to be the same as the Iijian or Australian material.

Fudistoma tumidum n.sp.

(Fig. 91)
Eudistoma ovatum: Kolt, 19725, p. 43 (part, specimen from Si. 27).

Distribetion

That Leachar Gulf of Corpemaria. 16"52.7'S. $140^{\circ} 502$ 2. Station 27 CStRO l'ruwn Survey, 5.8.1963. holotype, AM Ylo6s.

Description

Exileval Apprarancr the single colony available is more or less dome-shaped. about ficm in diameter, consisting ol a number of lobes of one 102 cm diameter arising from a common basal test mass. Although the preserved specimen is distorted and hardened and the rounded lobes of the upper surface are flattened, in life they probably were rounded and when inflated the colony probably appeared as an entire hemispher-
ical mass, its separation into discrete lohes bccoming obscured. The preserved specimen is grey and colourless, without sand, either on the surface or embedded on the test. However, the centre of each lobe, and of the colony, is packed with faecal pellets. Zooids are crowded and open all around the surface ol the lobes. The arrangement of zooids could not be determined in this distorted specimen. However, the long atrial siphon suggests that they are arranged in circles with the atrial apertures in the centre of each circle.

Internal. Structure: Zooids are rohust. Contracted thoraces are only about 1 mm long but they are also relatively thick. About 20 longitudinal muscle bands on the thorax continue along the ventral horder of the abdomen. On the thorax the longitudinal hands overlie ahout 30 distinct bands of transverse muscle. There are 3 rows ol branchial tentacles, those in the posterior row being relatively long. The dorsal end of the lirst row of stigmata inclines anteriorly along each sidc of the dorsal mid-line. There are at least 20 stigmata in the anterior row, but these could not be counted accurately. The longitudinal muscle bands continue along each side of the long abdomen, which has the usual smooth eudistomid stomach at its posterior end. The male and female gonads are in their usual position in the posterior end of the gut loop.

This specimen, collected in August, has up to 4 developing embryos in the peribranchial cavity. The larval trunk is 0.5 mm long, and the tail is wound almost three-quarters of the way around it. A large cercbral vesicle has an otolith, and an ocellus with conspicuous lens cells. Adhesive organs are relatively small, each with an axial cone in its epidermal cup at the end of a long. slender stalk. Each of 4 long, pointed lateral ectodermal ampullae on each side of the anterior end ol the trunk has a parietal branch from its base. The parietal branches also come to a point anteriorly but are rounded posteriorly. There are no median ampullae.

Remarks: The species is characterised by its naked, lobed colony with the rooids in circles. and by its larvac with parietal lobes at the base ol the exclusively lateral ampullae.

Eudistoma laysani also has naked, lobed colonies with crowded zooids, but the lobes are smaller, zooids are not in systems, and both zooids and larvae are smaller than those of the present species. Eudistoma gilhoviride also has lobed colonies and separate transverse muscle bands rather than a continuous coat. However, the lobes of E. gilhoviride are top-shaped, its pigmentation is conspicuous and persists for a long time in

Fic. 91. Eudistoma tumidum n.sp. (holotype AM Y 1068): \mathbf{a}, colony; b, thorax showing muscles; c. larva. Scales: a, 1 cm ; b.c, 0.1 mm .
alcohol, its zooids are not crowded, and larvae are much larger than those of the present species and lack the parietal lobes at the base of the lateral ampullac.

Although both zooids and larvae arc similar. Kott (1972e) was in error in assigning this specimen to E. ovatum. The latter species has extensive, smooth-surlaced colonies without lobes, and with embedded sand. Its larvale differ in that, although there are 2 lateral ampullae with parietal branches on each side, the dorsal and ventral ampullae are median (albeit with a parietal branch on each side) and the tail is slightly shorter than that of the present species.
The lectotype (ZMA TU1268) of Eudistoma segmentatum (Sluiter, 1909) also has the centre of cach lobe of the colony packed with laecal pellets. However, zooids open at the free ends of long cylindrical stalks (rather than around convex sessile lobes arising from the common hasal test. the thoracic transverse musculature is in a continuous coat (rather than in separate bands forming an open mesh with the longitudinal muscles), and both atrial and branchial siphons are short (in the present species the atrial siphon is long).

Genus Exostoma n.gen.

Type species: Polvcitor iamhinus Sluiter. 1909.
The genus is monotypic. It has 6-lobed branchial and atrial apertures, on well developed muscular siphons. The atrial siphon is posteriorly positioned. and opens into an extensive cloacal cavity. Longitudinal muscle hands extend from the thorax
alonge the abdomen in a band each side of the ventral lime. A conspicuous layet ul Lratnserse thoracic muscles lies beneath the longitudnal bands. There are 3 rows of stigmata without parastigmatie vessels. The ocsoplageal neek is Jong, and the smooth stomach is in the posterior part "f the long abdomen. Only short vascular processes arise from the posterior cond of the abdamen.

Dthough Sluiter (1909) did non record the presence of a cloacal chamber in his deseription of Pobrotor iamhimas, has figure (pl VIll, fig. 1) clearly shows the aperture at the top of the colony.

In its extensive cloncal covity, posterionly positioned 6-lohed atrial siphon, and 3 rows of stigmatia the genus resembles species in Ifopodistoma. However, zoods of the new genus are characteristic of the Pulyciloridate rather that the Holozodae, heing long. with a long oesophageal neck, short vasculat processes. and brooding their embryos in the atroal cavity (bathet than in a booud pouch). The ? larval adhesive organs are in the median line and have a wide llat-topped tuft ol axial columnar cells in a deep epodermal cup. is in Eevistamu.

The genus Hypodistoma Tokioka. 1967 a. delined hy ats type speces Distoma decrabtum Sluiter, 1895 from northern Australia. is a genus of the Holozoidte (related to Sigillina) which includes 1t. vavas (Millar, 1962) from South Africa. However. Hypedistomo vustum: Tokioka. 1967 from the P'alatu Is is a junior synonym of Polystor bunthinus the type species of the present new genus, L.rustombe.

It secms the prosenec ol a sloatal cavily, a unique lenture in the Polycitoridac, is a development in parallel with the development al at smilar eolony form in the Holozoidae, and the similar position of the atrial siphon is a contergent adaptation associated with the presence of the extersive eloacal cavity. Phydogenetically, the new genus. appears most closely related to Eudistomu. with its long oesophageal neck. 3 rows of sigmates and conspicuous transverse thoracic muscle bands bencath the longutelonal hands.

The only known species has a tropical western Pacitic range.

Exostoma ianthinum (Slater 1909)
(F5g. y2)
 1. 135

Hypudistamu reasuma: Tokioha. 19674, م. 12A, B Nishikawa, 19世4, p. 121.
Not Sikitlimis wastu Millar. 1962, p. 153.
DKтRIDUTIOV
 GII235). Philippines IQM GH495).
 Millar 1975). Philippincs (Van Name 1918). Palau Is (Tokioka 1967a).

The species has nor yet been recorded Irsm Aumbalia. although its necurrence off Port Moreshy is not far removed from the north eastern Australian continemat shelf and probably it occurs there. It wes taken in nes grass beds at Motupore 1. and has been recorded down to 150 m (Van Name 1418).

1) ESEREMAOS

Exitenal Appiaravel The colony varices from an irregular cushion up 103 cm thick. fixed by a large pare of its base, and walh 3 or 4 large common cloacal openings on the upper surfate. 10 ath upright cone with a single latge terminal elotacal aperture. The test is firm. although the outer layer is separated lrom the inner core hy the extensive interconnecting cloacal spaces that are 210.3 mm below the surface. The surlace ol the colony has wide rounded ridges and swellings that atc generally oriented along radi that converge toward the cloacal apertures. "I he branchist apertures of the rooids open in the depressions between these ridges and swallngs. In prexcrvative colonies are always a dank purplish-hrown colour.

Iviernal Structert: Contracted pooids are athout lem long, the greater part of their length being the long polycitorid oesophageal neck. The 6-lobed branchial aperture is terminal. There is a relatively long atrial siphon from the posterodursal corner of the thorax, and in relaved rooids it is dircted posteriorly. Although in contracted pooids it is often found directed anteriorly, this could fesult from the contraction of the cooids and thear withdrawal from the surface of the colony. Zoods are in crowded groups curving dwoss the top and atound the sides of the cluacal spaces beneath the surface of the colony. Thear 6-lobed anrial apertures on the end of the long siphons apen into the roof or outer wall of the cloacal cavities.
lixe body museulature consists of numerous. but finc. Iongitudinal and transverse bands. longitudinal muncles extend down the branchial siphon in 6 groups, ane corresponding to each lobe around the rim of the aperture. About 20 longitudinal bands are on cacla side of the thoras. These cuntune as a pair of wide bands along the langth of the ahdomen, one each side of the mial-
ventral line. Sphincters surround each of the apcrtures and the anterior part of the pharynx in front of the perforated area. About 30 circular muscles are fairly evenly spaced along the whole length of the thorax, Other circular and longitudinal bands extend along the whole length of the long atrial siphon.

At the base of the branchial siphon are 3 particularly robust tentacles, one on each side and one in the mid-ventral line. These atternate with 2 smatler tentacles in a circle slightly anterior to the larger ones. Rudimentary tentacles alternatc with the larger sizes. The opening of the neural
duct is directed forwards. The pointed dorsal languets are found slighty to the left of the dorsal mid-line. An extensive unperforated part of the pharyngeal wall exists anterior and another posterior, wo the perforated area which has 3 tows. tach of 20 long stigmata.

The ocsophagus is long. the smooth shieldshaped stomach is in the posterior end of the abdomen. The duodenal area is fairly long, and is sharply constricted from an oval posterion stomach. The narrow mid-intestine curves around in the pole ol the gut loop. It enters the rectum at the proximal end of the descending limb. There

P1G; 92, Exostoma ianthinm negen. (QM GH235); a, colony; b, scetion through colony shoming branchial openings of zooids into surface depressions, and long atral siphons opening into cloacal cantals: c. thorax: d, abdomen; e, larva. Scales. a, $1 \mathrm{~m} ; \mathrm{b}, 2 \mathrm{~mm}$; c,d. 0.5 mm ; e. 0.2 mm .
is a branched gastro-intestinal gland, but no reservoir.

The male gonad consists of a clump of almost spherical follicles on the right sidc of the gut loop in the vicinity of the stomach. A group of up to 3 large eggs are on the outside of the male follicles. A single ovum is incubated in the right peribranchial cavity anterior to the atrial siphon. Embryos are in the atrial cavity of the New Guinea specimen (collected in November). In the Philippine specimen, collected in July, tailed larvae are present. The larval trunk is 0.8 mm long and the tail relatively short, being wound only half-way around the trunk. The 3 large adhcsive organs, on short, thick stalks, are in the median line and altornate with paired ectodermal ampullae. The oozooid has 2 rows of stigmata.

Only short, inconspicuous vascular appendages are at the posterior end of each zooid.

Remarks: Although the colony and to some extent zooids of this species resemble those of Hypotistoma, the zooids differ in having a long ocsophageal neck, a small cudistomid-shaped stomach, and short, inconspicuous vascular appendage; and lacking a stalked brood pouch. Zooids are characteristic of the Polycitoridae. The species differs from Eudistoma spp. in having extensive cloacal systems.

Further, larvae resemble those of certain Eudistoma spp. (see E. maculosum n.sp.) with large adhesive organs on short, thick stalks.

Hypoctistoma vastum: Nishikawa, 1984 from the western Pacific may be a synonym of the present species. Nishikawa (1984) believed it to be conspecific with H. vastum: Tokioka, 1967b, and with H. ianthinum: Millar, 1975, which are both synonyms of Exostoma ianthinum. However, he also included Hypodistoma vastum (Millar, 1962) in his synonymy. Since the latter species is a member of a different family and genus, its inclusion amongst the synonyms of Nishikawa's specimen raises doubts as to the identify of that specimen.

Polycitor torosus Sluiter, 1909, appcars a cushion-like specimen of the present species. Although Sluiter regarded the gut loop as relatively short, this was probably only apparent. owing to the contraction of the abdomen, for relaxed zooids are reported about the same length as those of the present species.

Genus Brevicollus n.gen.

Type species: Brevicollus tuberatus n.gen. n.sp.
The genus is characterised by its relatively short, emhedded zooids with separately opening 6 -lobed
apertures, 5 rows of stignata, each row crossed by a parastigmatic vessel, and a short oesophageal neck. The stomach wall has longitudinal folds. Gonads, present in the end of the gut Joop, consist of relatively large and numerous pyriform male follicles and a 5 - or 6 -egg ovary, Numerous (up to 12) embryos are brooded in the atrial cavity. The proximal part of the oviduct runs a convoluted course over the surface of the ovary. The body musculature consists of longitudinal bands that exchange fibres with one another to form a meshwork over the sides of the thorax before extending down the length of the abdomen. There are no transverse or oblique muscles.

The 3 deep, tulip-shaped, sessile larval adhesive organs in the anterior mid-line of the trunk are unique. These are surrounded by numerous ectodermal ampullae that project from the anterior end of the trunk. Also fine thread-like extensions from the cctodermal cells expand into tear-shaped vesicles at the surface of the test as in species of Sigillina, Polycitor and Eudistoma (see Annotated Glossary: larvae).

Polydistoma, a new genus of the Holozoidae also with 5 rows of stigmata. is distinguished from Brevicollus by its holozoid vascular stolon and brood pouch. The two known species of Polydistoma lack parastigmatic vesscls, although these are in other holozoid genera (Distaplia, Hypsistozoa and Neodistoma). In view of other differences, the prescnce of parastigmatic vesscls in Brevicollus rather than being indicative of common ancestry with the Holozoidae. probably is due to convergence, as there is no other evidence of any phylogenetic relationship.

Brevicollus has been assigned to the Polycitoridae because of its short vascular appendages. separately opening zooids, and absence of a posterior abdomen with gonads. However, it has some characters that are not shared with polycitorids, viz. a relatively large thorax, parastigmatic vessels in the branchial sac, a short oesophageal neck and a large number of embryos. Further, although the larval adhesive organs arc in the anterior mid-line these sessile, tulip-shaped organs are unique. It is possible these anomalous characters are secondary adaptations that would not preclude a relationship with the Polycitoridae. The convolutions of the vas defcrens could be associated with a secondary shortening of the abdomen. Another alternative for Brevicollus is an affinity with euherdmaniinid genera, since it differs from Ritterella only in its larva, convoluted vas deferens and lack of a posterior abdomen containing the gonads.

Thus, although, at present the genus is classified
in the Polycitoridate on the basis of separately opening apertures. and lack of a posterior abdomen and long vascular stolon, it is possible the phylogens of this new genus would be mare accurately represented by an independent status reflecting a relationship with Riturella.

This monotypic genus is at present known only from 2 specimens, one from each of 1 wo locations in southern Australias.

Brevicollus tuberatus nisp.

(Fig. 93. Plate 16h)
Distrant tum
 coll. N. Holmes and S. Shepherd 9.4, 87, holotype S: AM 1:2059 OM GHH188). Victoria (Gabo 1., 10 15m, coll. d. Watson 14.5.70, paratype MV F45284 QM GH495). IVRTHER RICOR1ms None.

Deseription

Exllrval Abptaravet: The holotype colony is firm and tuber-tike, growing along a weed stalk. The colony is basically a thick, undulating cylinder, randomly constricted along its length to partially separate it into short potato-shaped
masses from 2 to 5 cm long and about 2 cm in diameter. The more angular lobes (4) of the paratype colony articulate with one another along the stalk of a Pyura australis. A thin layer of sand is on the surface, and also scattered evenly, but sparsely, through the firm, gelatinous, intornal test. Zooids open all around the surface of the colony and converge toward the centre.

INHRNAE SIRtCTHRE: Zooids are retatively large, about fom long with a wide thorax. Both b-lobed apertures are on the anterior end. Thorad and abdomen each occupy about half the length of the zooid. Strong circular muscles surround each aperture. Siphons are short. Rongitudinal nuscte bands from each siphon radiate out onto the thorax where they exchange libres with one another to lorm a meshwork. They continue on to the abdomen as fine bands along its length. Five rows of 35 long rectangular stigmata are on each side of the branchial sac. Each tow is crossed by a parastigmatic vesset; and is interrupted in the dorsal mid-line by the large dorsal simus. Transverse branchial vessels continue over the dorsal sinus where each is produced into a narrow.

Fic: 93, Brevicolhs ruberutu, n.gen., n.sp. (holotype SAM F2059. QM Gffl8f): a, colony: b, rowid: e, larad. epidermal vesicles not shown; d, anterior end of larsal trunk, test removed from all but a small sectron. taking vesicles with it. to expose none of the musual adhesive brgans surrounded by epidermal ampullat. Seales: a. Icm: b. 1 mm ; c, d, I. Imm.
pointed, dorsal languet. Smaller languets occur where the parastigmatic vessels cross the dorsal sinus.

The oesophagus is relatively short. The rather small, shield-shaped stomach is in the middle onethird of the abdomen. It has 8 broad, rounded, longitudinal folds in its wall. A long elliptical posterior stomach is in the posterior third of the descending limb of the gut loop. The wide reeturn extends from the pole of the gut loop to ahout halfway up the thorax, terminating in a 2-lipped anus. Gonads are in the posterior end of the gut toop overlapping the pole of the loop on the right side. The testis consists of about 25 pyriform follieles and the ovary contains up to 4 eggs, one or two larger than the others. The proximal end of the male duct runs a complex, convoluted course as it leaves the testis, sometimes becoming intermingled with the male follicles, then curving around onto the outer surface of the ovary before it straightens out to run alongside the rectum. It opens in the atrial cavity near the anus.
In this colony about 12 large, orange embryos are at various stages of development in the right peribranchial cavity. The trunk of the taited larva is about 1 mm long and is deeper than long. The oozooid is vertical, with a well formed branchial sae and gut loop. The former has 2 rows of stigmata. The atrial aperture is directed horizontally at right angles to the branchial aperture (unlike Eudisfoma spp.). There is a large otolith and ocellus and the tail is wound completely
around the trunk. The almost sessile adhesive organs are in a vertical line down the centre of the anterior end of the trunk. They consist of a deep tulip shaped cup with filamentous lamellae in the concavity. Numerous, crowded ectodermal ampultae project from the anterior larval epidermis. These, together with masses of tear-dropshaped terminal vesicles attached to thread-like extensions of the ectodermal cells of the ampulla. obscure the adhesive organs. The whole lront and ventral mid-line of the trunk has a foamy appearance resulting from these ampullae and their vesicles.

Remarks: The larval adhesive organs of this species are in a vertical line. as in Eudistoma and Polycitor, hut they are different, lacking the central axial cells. Further. the ectodermal ampullae are unusual, more numerous and crowded than in other species of the Polycitoridae. Although the cetodermal vesicles do occur in Eudistomo spp., they are not unique to the Polycitoridae, but oceur in most other taxa (see Annotated Glossary: larvae) and are not indicative ol relationships. These factors, logether with the presence of parastigmatic vessels, a convoluted vas delerens, and the large number ol larvae being incubated, distinguish the genus and the species from others in this family.

Polvifor wheliscus, also from South Australian waters, has 6 rows of stigmata. However it has other characters, in addition to the generic ones. which distinguish it from the present species.

Plate 1: a, Ciona intestinalis (Port Phillip Bay, Vic.). b,c, Rhopalaea crassa, (Heron I., Qld, thoraces only visible, abdomina buried in rubble substrate, rectum, terminating in yellow anus, alongside white vas deferens, yellow ocelli around the border of each aperture, stigmata and muscles clearly seen through the transparent test and body wall - b, right side; c, dorsum). d, Pseudodiazona claviformis (SAM E1035 Seacliffe SA). e,f, Clavelina arafurensis (QM Gll988 Exmouth Gulf, WA).
Photos: a G. Russ; b R. and V. Taylor; d N. Holmes; c,e,f N. Coleman.

Plate 2: a,b,?c, Clavelina australis (a, Port Hacking, NSW; b, Port Stephens, NSW; c, this Great Barrier Reef specimen looks like C. australis but the species has not been taken from waters north of Moreton Bay. d, Clavelina baudinensis (Rottnest I., W.A.). e,f, Clavelina cylindrica (e, QM G9482 Sorrento, WA; f, WAM 758.83 Carnac I., WA).

Photos: a,e,f N. Coleman; b P. Fredrickson; c R. and V. Taylor; d R. Lethbridge.

Plate 4: a, Clavelina nigra n.sp. (QM G9486 Rottnest I., WA). b, Clavelina oliva n.sp. (QM GH4108 Lizard I., Q1d). c, Clavelina ostrearium (South Australia). d,e,?f, Clavelina pseudobaudinensis (showing variations in the extent of pigment patches - d, QM G10091 Jervis Bay, NSW; e; QM G9484 Portsea, Vic.; ?1, Lord Howe 1.). g, ?Clavelina robusta n.sp. (Port Hedland, WA).
Photos: a,e-g N. Coleman; b D. Parry; c R. Kuiter; d P. Fredrickson.

Plate 5: a-c, Nephtheis fascicularis (a, QM GH2093 Martha Ridgeway Reef, Qld; b, QM G9258 Roebuck Bay, WA; c, Port Hedland, WA). d, Pycnoclavella arenosa n.sp., (QM GH4360 Erith I., Bass Strait, with yellow thoraces projecting through the white sand on the common stalk). e, Pycnoclavella aurantia n.sp. (QM GH2295 Nuyts Archipelago, SA). f, Pycnoclavella detorta (QM G9488 Wistari Reef, Qld).
Photos: a E. Lovell; b,c,e,f N. Coleman; d N. Holmes.

Plate 6: a-f, Pycnoclavella diminula (showing colour variants - a, QM GHi302 in caves Ward l., SA; b, Port Hedland, WA; c, Carnac 1., WA; d, QM GH4083 Exmouth, W.A.; e, Lord Howe I.; f, QM G10162 Lizard I., Qld). g, Pycnoclavella elongata n.sp. (SAM E1981 Franklin I., SA). h, Pycnoclavella tabella n.sp. (Portsea, Vic.).
Photos: a R. Kuiter; b-f,h N. Coleman; g N. Holmes.

Plate 7: a-c, Euclavella claviformis n.gen. (a, QM G10152 Port Stephens, NSW; b, Port Stephens NSW; c, Botany Bay, NSW). d,e, Sigillina australis (d, QM GH944 Great Australian Bight, SA; e, Sorrento, WA). f-g, Sigillina cyanea (f, ? NE Qld; g, QM G9479 Rottnest I., WA).
Photos: a,e,g N. Coleman; b P. Fredrickson; c,d R. Kuiter; f E. Lovell.

Plate 8: a, Sigillina fantasiana (blue colony on Amphibolus Spencer Gulf, SA). b, Sigillina grandissima n.sp. (QM GH 1305 Topgallant I., SA). c,d, Sigillina signifera (c, Lizard I., Qld; d, QM GH278 Britomart Reef, Qld). e, Hypodistoma deerratum (QM G10153 Lizard I., Qld). f-h, Hypodistoma mirabile (f, Golden I., SA; g, Perforated I., SA; h, QM GH2379 Ward I., SA).
Photos: a,b S. Shepherd; c D. Parry; d E. Lovell; e N. Coleman; f,g W.H. Sasse; h N. Holmes.

Plate 9: a, Distaplia australiensis (South Australia). b, Distaplia dubia (QM GH52 Lord Howe I.). c,d, Distaplia florida n.sp. (QM GH4103 Byron Bay, NSW - c, colony relaxed; d, colony contracted). e, Distaplia pallida n.sp. (colonies on experimental fouling plate QM G11924 Portsea Pier, Vic.) f,g, Distaplia stylifera (f, Fremantle WA; g, QM GH2407 Hotspot, SA).
Photos: a,g N. Holmes; b-d,f N. Coleman; e G. Russ.

Plate 10: a-c, Distaplia viridis (a,b, QM GH45 Portland, Vic.; c, QM GH4159 Golden 1., SA). d-h, Hypsistozoa distomoides, showing colour variants (d,e, Flinders I., SA; f, QM GH 1280 Ward I., SA; g, QM GH2390 Hotspot, SA; h, QM GH1297 Ward I., SA).
Photos: a,b N. Coleman; c,d,g N. Holmes; e,f,h, R. Kuiter.

Plate 11: a,b, Neodistoma mammillatum n.gen. n.sp. (SAM E1984 Seacliffe, SA). c-h, Sycozoa cerebriformis (colour variants - c, QM GH2394 Flinders I., SA; d, Jervis Bay, NSW; e, QM GH2393 Flinders I., SA; f, QM GH2284 Nuyts Archipelago, SA; g, detail of colony Port Hacking, NSW; h, well developed colony, South Australia).
Photos: a-c,e,f N. Holmes; d P. Fredrickson; g N. Coleman; h R. Kuiter.

Plate 12. a, Sycozoa murrayi (QM GH4155 the Gap, SA). b, Sycozoa pedunculata (South Australia). c,d, Sycozoa pulchra (South Australia). e, Sycozoa sigillinoides (QM G10148 St. Helens, Tas.). f, Stomozoa ausiraliensis n.sp. (QM GH2392 Ward I., SA). g, Stomozoa bellissima n.sp. (QM G9267 Exmouth Gulf, WA).

Photos: a W.H. Sasse; b,c R. Kuiter; d N. Holmes; e,g N. Coleman; f S.A. Shepherd.

Plate 13. a,b, Polycitor calamus n.sp. (a, QM GH4188 Avoid Bay, SA; b, SAM E2057 Flinders I., SA). c, Polycitor cerasus n.sp. (SAM E2080 Nuyts Archipelago, SA). d-h, Polycitor giganteus (d, Port Noarlunga, SA; e, Port Stephens, NSW; f, Bass Strait; g, South Australia; h, Botany Bay, NSW). i, Polycilor nubilus n.sp. (SAM E2079 Flinders I., SA).

Photos: a W.H. Sasse; b,c,i N. Holmes; d,f,h N. Coleman; e P. Fredrickson; g R. Kuiter.

Plate 14. a-d, Cystodytes dellachiajei (a, QM GH2401 West I., SA; b, QM GH2402 West I., SA; c, South Australia; d, New South Wales). e, Polycitorella coronaria (QM GH2377 Hotspot, SA). f,g, Polycitorella orientalis n.sp. (f, QM G9477 Swain Reefs, Qld, contracted specimens, with conspicuous rudimentary cloacal cavities opening to the surface; g, Heron I., Qld, extended specimens, the branchial openings conspicuous and the atrial apertures in the shaded cloacal depressions in the centre of each system).
Photos: a,b S. A. Shepherd; c R. Kuiter; d,g P. Fredrickson; e N. Holmes; f N. Coleman.

Plate 15: a, Eudistoma amplum (Heron I., Qld, with green Prochloron on surface). b, Eudistoma constrictum n.sp. (QM GH2291 Topgallant I., SA). c, Eudistoma elongatum (Moreton Bay, Qld). d-f, Eudistoma gilboviride (d, crowded lobes, OM G11959 Lizard I., Qld; e,f, QM G11961 Swain Reefs, QId).
Photos: a D. Parry; b N. Holmes; c-f N. Coleman.

Plate 16. a-c,?d, Eudistoma maculosum n.sp. (a,b, QM GH2391 Flinders I., SA; c, QM GH4605 Jervis Bay, NSW; d, ? E. maculosum South Australia). e,f, Eudistoma reginum n.sp. (Heron I., Qld: e, colony, depressions representing rudimentary cloacal cavities can be seen as darker shadows in the naked, red areas; \mathbf{f}, larva, with red pigment accumulated in vicinity of adhesive organs and in the posterior horns of the haemocoelic cavity). g, Eudistoma sabulosum n.sp. (SAM E2084 Ward I., SA). h, Brevicollus tuberatus n.gen. n.sp. (SAM E2059 the Gap, SA).
Photos: a,b N. Holmes; c N. Coleman; d R. Kuiter; e,f D. Parry; g S.A. Shepherd; h W.H. Sasse.

ITIERATURFCITED

Anнou।，D．P．Aon Irason，W，B，1968．Ritterella rulora and Distaphia vmirtis：wo new colonial ascidians from the west coast of North America．Bull．with Calfi．Acaed．Sci．67（3）： 143 54．
 and the characteristics of new species from the shores of Massachusctis．Proe Ahm Ass．1849：157 59.

MuER，J．1863．Obvervations on the British Tunicata With desenptions of suseral new species，Amn．Mug． mar．Miss．（3）11： 15373.
Abmr．S．AvD Hancock A．1907．British Tunicata． II．ed．J．Hopkirisun Ray Srac Fubls 2：I 164.
 the tunicate fauma of Norway．with notes on Polycitor giganteru（Sluiter）Ark．Zrool，Srockholm 18（1）：1－22．
1．927．The genas Sybtranchion Herdm．with supple－ mentary notes on Rhopaluta norvegita Ärnbäck． Ark．Zont Stockhom 18（35）： 120.
1934．Nothern and Arctic invertebrates in tbe collection of the Swedish State Museum．IX Tunicata．Part 4，Agnesiidae，Rhodosomatidate， Ascidiidse，Cionidat，Re menska Velensh－Akal， Hantll．（3）13（3）： 341.
1950．Ascidiacea Part 2，Further zroh．Resulha Swed． Amarte Fxped．190！ 1903 4 41 ： 141.
Hinioln，L．Vin IXצ7．Les genres Ectemascridia Herd．， Rhopalaea lıtil，et Shuteria n．e．Note pour servir a la classification dar Tunicuers．Budl．Acod．Refy． （3）1417）： 1944.
「unmers．Caducichordata（Ascidiaces et Thalia－ ces）．Résut，Vorage S．Y．Belgica，Loohotio 1122.
Burkill，N I． 1932 Ascidians of the Bermudas．Bioh Bull．mar．biol．Lah．，Houds Hole bz： 778 sk ．
1935d．Studies in tunicate development 111．Differ－ ential retardation and acceleration．Ihil．Trans．R． Sou．B 225：225－326．
1935b．Stodies in tunicate develonment IV，Astxual reproduction．Phil．Irans．R．Sir．B 225： 32779.
1936．Studies in tunieate development V．The evolutoon and classilication of ascidians．Phol． Trans．R．Sel．B 226： 4370.
1947．The structure，tadpole and budding of the ascidian Pronoclavella nurilucon（iarstang．I．mar． biol．As．．U．K．27（1）：245－51．
1947h．The structure，development and hudding of tbe ascidian Eudisromo．A．Morph 81： 26981.
1948a．ridpole laryace of the asedians Polpetor． Euherdmania and Polnynuraron．1．Morph．82： 35564.
$194 \times h$ ．Budding and the reproductive cycle of Disoplia，Q．d．microwe．Sis．89： 25389
1450．The Tunicata．Ray Sere Puds 133： 1354.
1955．＂The Origin of Vertebrates＇（Oxford University l＇ress：t．ondon）257pr．
Berplli．N．I．ang Absot．D．P．1949．The structure
 nature of its badpole lars：a（im．I．Rev． 27434.
 on 1 hi Inerteberta of Massachunets 2nd edition． f． 127 （Massachustle 1 ．cgimanare：Boxton）．
Bonsistr．K，189h．Ascidiat simplices me Ascodate
 1870－78（Christanaia） 23 Zootogic（I untiata I）： \＆iv． 116.
Bramo．131．1948．Ascidians ol the Hauraki ciull，Part 1．Jrans．Re Ser．（：C．771）： 11538.
1951．Averdianm ol tew 7atand．Part 4 Ascidans in the vicimty of Chrisechurch．Jrand．R．Sim：v．．f． $78123) ; 3445$.
1451．Aneidians of Vew／a：aland．Pary or Ascudans of the Hatmaki Guli．Part 2．Rrums．Re．Sine A／ 79（1）：1104 13．
18：2a．Astdians of Ven Peatand．Part Aseidhans form Otago coastal witera．I＇art 2．Jomm．R．．bes 1．人． 79 （3 4）： 4528.
1452b．Aseidencol hew 7caland．Vans Ascidimes
 18795.

 Sos：Y．／．8111）：53 fi4．
1956a．frafnena narkio，a compound itacidian from Western Austratha．S．Proce R ，Bere Hest．．ims． for）1： 312.
1950h．The grembth and develumant of at miparous compound ascidan．Hypsistrazo hameriama．Qu mientse Sci 97： 4.3554.
1956e，Ax，Hians trom the（hathant is．atad the Chatham Rise，7rom，R．Soc．（：／．8t（1）： 12137.
195\％．Ascidians of New Zeafand．Part 11 Ascidiens
 85（3）： 4.3953.
1954．All aceonnt ol larval hudding in the compourad
 100（4）： 575×9.
1960．Ascidians of New Rcaland．Ifarl 13 Ascuitam of the Cuoh straim region．Trums．R．Sus．V．e． 881 1： 11420
Ban－P．1448．Embiancherment destunumer．In Grasme P．P．（cd．）＇Traile de Zoolugic＇rol．11（c）p． 553 751 （Wasm el 「fe：Patrs）
Brovin H． Ci ．1862．Weichthiers．In＂Dice Klasem und Ordnungen des Wherkeichs vit． 311 p． 10.3223 （C．）．Wiater：1．ciphe）

 Hum： $27171: 20.380$.
 syotematique du gerre sigilbua．Cr hephed．Sedm． ． 4 ad 5% Parı 121： 8324
1901．Sue des clavelines nometles（Simadavellah．
 Seam：doad Sul Parin 13．IH 20.
1908．Sur ane forme de tunitiers provenant de lexpeditan de（＇Avirolata（1029）at te exare
 （14．Paris 14229.12
1904．Recherches sur bia liandle des Distomadac．Aioll to iom．Fr Bete 42：159．

Crovis R.A. 1977. Larval adhesive organs and metarmorphosis in ascidians, 1. Fine structure of the evertine papillat of Distaplianotidentalis. Cell. Tirss, Res. 183: 423-44.
 Mollusea and shells. d. Mar. Hist. Boseon 2.53 111.
Ct varacolam R O. 1871. Notes an the reptiles, amphibia, fishes, Mollusca and Crustacea obtsined during the voyage of II.M.S. Nassau in the ycars 18661869 Trums. Fimn Soc lond. 27:465 502.
Cuvirs. (7. 1815. Memoire sur les ascidies et sur feur anatomique. Mept. Mus. nam. Hist. nat. Paris 2: 10.39,

Daf1 W.H. 1870. Revision of the classilication of the Mollusca of Massachusetts. Proz. Bosron Soc nat, Hist, 13: 24057.
Dumas D. 1899. Les Tormations epicardiques ehez Ciona intestinaliv. Archs Biol. Paris 16: 125
Drkal J.E. 1843. Parl 5. Mollusca. In Natural History of Netw York p. 258.60 (New York Nsembly: Albany) vil. 271 pp.
Drita valtr. A. 1877, 'Contribuzioni alla storia naturalle delle ascidie composte del Golfo di Napoli con la deserizione di alcune specie e varicta nuove di altre poconate (Napoli): (fide Seeliger, O., 1893).
1881. Nouvi contribuzioni alla storia naturalle detle aseidie conopaste def (ionfo di Napoti. Atif Aw'oul nug. Linewi Series 3. Memoir. 10(3): 431 98.
Drater Chmor. S. 1841. Descrizione e Notomla degii Animati Invertebrati della Sicilia osservati negli anni $1822^{3} 30^{\circ}$ vol. 3 p. $13-46$ (Napoli).
Drasche, R. von 1882. Oxycorinia, cine neve Synascidien-Gattung. Verh. zool-bot. Ges. Wien 32: 175-8.
1883. Die Synascidien der Bucht von Rovignot (Istrien). In 'Ein Beitrag zur Fauna der Adria' (Wien) 41 pp
1884. Weber ennige neue und wenigen gekamote aussereuropaische einfache Ascidien. Dentasche. Akad. Wiss., Wien. 48: 369-87.
Fitmivg. J. 1822. 'The Philosophy of Zoology' vol. 2, pp. 5108 18 (Edinburgh and London).
Forbes. E., लad Hiniey. S.C.T. 1848. 'A history of British Molluscs and their shells" vol, I (London).
Fromptecksos, P. 1978. 'Metals in the marine environment MSc, thesis (Macquaric IInversity: Sydrey).
GAFRINFR, I. 1774. Zoophyta, quacdam minuta In Pallas, P.S. (ed,), 'Specilegia Zoologia' /ase. 10. p. 2441 (G.A. I ange: Berolini).
Garstangi. W. 1891. Note on a new and primitive type of compound ascidian- Ann. Mag, nar. Ifist. (6)8: 2658.

Glard. A.M. 1×72 Recherches sue les ascidies composées ou synascidics. Archrs Zool. exp. gèn. 1: 501704.
Croolasolay. 1. 1974. The physiology of ascidiens. Adw. mar Biol 12: 1-129.
Gonit 1s A.A. 1856. Moliusca and shells. Inited Stutes exploring expedition during the vears 18.18-1842 ander the commund of Charles Withers. Atlas: 1 16. pls ! 56.

Guvarkus. J.E 1765. Söc-Pungen (Jethyum sociabile) luldstandige beskreven. Trondhit Selsk. Skrifi. 3: 81 102. (Translated 1767: Vollständige Beschreibung des Seebeutels. Drontheim. Gesellsch. Schriti. 3. 69).

Hancock. A. 1870. On the letyal state of Molgula with a description of several new speeies of simple ascidians. Amp Mag. nat. Hish. (4)6: 353-68.
HAkANI. H. 1925, Ascidies recoltés ate cours des comipagnes scientifiques de S.A.S. Ie Prince Albet ter de Monaco (note préliminaite), Bull. (has). .oceanogr. Munacu 467: $1-6$
1929. Aseidics provenant des eroisietes du Prirce Albert let de Monace. Résultats de Campugnes Scientifve accomplies sur son Yacht par Alhert ler (Monaca) 75: 1110.
Harani. H. And Vfrmieres, P. 1938. Ascidiae compositae. Scien. Rep. Australas. Antari. Exped 1911-143(5): 113.
Hakimivir. R. 1899. Dic monascidien der Bremer expedition nach Ostspitzbergen. Zoul. Johrf. Syw. 12: 453511
1903. Die Ascidien der Arklis. Fulna arct, 3(2): 93 412.
1905. Ascidiens von Maritius, Zeot. Jh. 8: 383-406,
1909. Ascidien (eontinuation of work by Sectiger). In Bronn H.G. (ed.) Klassen und Ordnungen des Tierreichs' vol. 3. suppl. (89 98): p. 1281772 (C.F: Winter: Leipzig), Abstract, repeating lists of species by Scheporieff, A. 1911, in Ardi. Naturgeych. 6: 3. 27.
1911. Dje Ascidien der Deutschen SüdpolarExpedivion 1901 1903. Dt. Sürdpol-Exped. (l9053() 12(4): 407606.
1912. Die Aseidien der Deutschen Tieffece Expedition. Wiss. Ergetin. dt. Thefree-Exped. Valdivia 16(3): 223392.

1915a. Alder und Hancoek's Britische Tunicaten. Eine Revision. Mitt, _ael Mus. Berl. 7: 30344.
1915b. Ascidian nomina conservanda. Sber Gies. namef. Freunde Betl. 1915: 247 58.
1919. Aseidien. In Resuits of Dr F Mjōberg's Swedish scienufic expeditions to Australia 1910 13. K. suenska Vetensk-Ahad. 60(4): 1 150.
1920. Mittellang. In Kukenthat, W (ed,) Die Bedeutung der Verbreitung mariner Bodentiere für die Palaogeographie', Sher. Ges, naturf. Freunde Bert. 1919: 210, 305.
1922. Die ascidienlauna des Trondhjemfjords. Meddelese fra Toondhems Biologiske Station 14. K. norske Vidensk. Selsk. Skr. $1921(6): 147$.
1924. Ascidiacea, part II 7.ugletch eine ubersicht über die urktische und boreale Ascidienfauna aul tiergeographischer Girundlage, Ingolf-Exjed. 2(7): 1275.

Hartmeyer. R.. And Michatusen. W. 1928. Ascidiae Diktyobranchiae und Ptychobranchiae. Fauna Sudwest-Aust. 5: 251 -460.
Mistinas. A.B. 1931. Tunicata. Scient. Rep. Gi Barrier Reef Exped, 4(3): 69109.
Hawkins. C.J., Kott. P. Parry. D.L. and Swinemart. J.H. 1983. Vanadium content and oxidation state

Pelated to ascidian phylogeny, Comp. Biochem. Physiol. 76B(3): 555-8.
Hritra. C. 1875, Untersuchungen uber die Tunicater des Adriatischen Meeres (2). Denkschr. Akad. wiss. Wien 36. 107-25.
Hfroman. W. A. 1880 . Preliminary report on the Tuncata of the Challenger expedition. Ascididae. Froc. R. Soc. Edint. 10(1): 45872.
1882. Report on the Tunicata collected during the voyage of H.M.S. Chullenger during the years 1873 76. Pt. 1, Ascidiae simplices. Zool. Chall. Exp. 6(17): 1-296.
1886. Report on the Tunicata collected during the voyage of H.M.S. Challenger during the years 1873 76. Pt. 11, Ascidiac compositae, Zool. Chall. Exp. 14(38): 1-425,
1890, On the genus Eereinascidia and its relations; with descriptions of two new species, and a classification of the lamily Clavelinidac. Proc. Trans, Lpoot biol. Soe. 5: 144-63.
1891. A revised classification of the Tumicata, with definitions of the orders, sub-orders, families, subfamilies and genera, and analytical keys to the species. .1. Linn. Soc. Lond. Zoul. 23: 558-652.
1899. Descriptive catalogue of the Turicata in the Australian Museum. Ausiralian Museum. Sydned, Catalogie 17: 1-139.
1906. Repart on the Tunicata. Ceylon Pearl Oy'ster Fisheries suppl. rept. 39: 295-348,
Herdman, W.A. ano Ridofle, W. 1913. The Tunicata of the Thetis Expedition: in 'Scientific results of the Trawl Expedition Theris' Part 17. Mem. Aust. Mus, 4: 873-89.
Hrrscmife. A. 1914. Ueber die Restitutions und Involutions-vorgange bei operierten Examplaren von Ciona intestinalis Flem. Arch. Mikrask. Anat. Enrw Mech. 85; 205-27.
Hosbing. 2. and Nishikawa. T. 1985. Taxonomic studies of Ciona intestinalis (L.) and its allies. Publs Seto mar. biol. Lab. $30(1 \quad 3): 61-79$.
Hoshino. Z. AND Toxtoka. T. 1967. An unusually robust Ciona from the northeastern coast of Honsyu Island, Japan, Publs Seto mar, biol, Lab, 15(4): 275-90.
Huntsman. A.G. 1912a. Holosomatous ascidians from the coast of western Canada. Conrr. Can. Biol. Fish. 1906-1910: 103-85.
1912b. Ascidians from the coasts of Canada. Trans. R. Can. Inst. 9. 111-48.

Huns. J. 1937 . Ascidiaceat Tethyodeae Seescheiden. In Kukenthal, W. and Krumbach, I. (eds) Handb. Zool. 5(2)6: 545-672.
Juirv. C. 1904. Récherehes sur la phylogenése des tuniciers Archiascidia neapolitana nov. gen. Mitr. zool, Stn Neapel 16: 489-552.
Kisteven. H.L. 1909. Studies on Tunticata no. I. Proc. Linn. Soc. N.S. F. 34: 276-95.
Kivgisify J.S. 1901. Preliminary catalogue of the marine invertebrates of Casco Bay. Maine. Proc. Portland Soe: nat. Hist. 2; 159-83,

Kon1, P. 1952. Ascidians of Australia. I. Stulidobranchiata and Phlebobranchiata. Aust. J. mar. Freshu: Res. 3(3): 206-333.
1954. Tunicata. Rep. B.A.N.Z. antarth. Res. Exped. 1(4): 121-82.
1957a. Ascidians of Austealia 11. Aplousobramehiats lahille: Clavelinidae Forbes and Hanley and Polyclinidae Verrill. Aust. J. mar. Freshw, Res. 8(1) 64-10.
1957b. The sessile Tunicata. Scione. Ropp, fohm Murroy Exped. 10(4): 129-50.
1957c, Sotre tunicates from Macquaric Island and Heard Island. A.N.A.R.E. Rep. (Ser, B) 11. 14
1962. The ascidians of Australia III. Aplousobranchiata Lahille: Dideminidae Giard Aust . . mor Heshn: Res 13(3): 265-334.
1963. The ascidians of Australia IV. Aplousobranchiatn Lahille: Polyclinidac Verrill (continued). Aush. J. niar. Freshm: Res. 14(1): 70 718.
19th. Ascidians of northern Australia. Pap. Dep: Zool. Univ. Qd 2(15): 279-304.
1967. Alopozoa deerald (Sluiter); a discussion of the relationships of the genus and species. Proe: Linn. Soc. N.S. W. 91(3): $185-8$.
1969. Antarctic Ascidiacea. A monographic account of the known species based on specimens collected under U.S. Government auspices 1947 to 1963. Ahtarct. Res. Ser. 13: i-xy, 1239.
1971. Antarctic Ascidncea II. Collections made south of 40 south latitude $1963 / 67$, principally by the U,S VS. Eltanion. Anlurch Res, Ser, Biology 16(4): i iii, 160 .
1972a. The ascidians of Sourt Australis I. Spencer Gulf, St. Vincent Gulf and Encounter Bay. Trans. R. Soc. S. Aust. 96(1): 152.

1972b. The ascidians of South Australia 1L. Eastern Sector of the Great Australian Bight and Investigator Strait. Trans. R. Soc. S. Ausf, 96(4). 165 96.

1972c. Some sublittoral ascidians in Moreton Bay and their seasonal oceurrence. Mem. Qd Mus, 16(2): 233-60.
1972d, Notes on some ascidians from Port Jackson. Botany Bay and Port Hacking NSW. Proc. Linn. Soc. N.S.W. 97(4): 24.1-57.
1972c. The fauna of the Gulf of Catpentariat: Ascidiacea (Chordata: Tunicata). Fish Nores Qd (n.s.) 2: 3954.
1974. The evolution and distribution of Austratan tropical Ascidiacea. In 'Proceedings Socond International Coral Reef Symposium Great Barrier Reel 1973 vol. I p. 406-23 (Great Barrier Reel' Commitlee: Brisbanc).
1975. The ascidians of South Australia III. Northern sector of the Great Australian Bight and additional records. Trans. R. Suc. S. Aust. 99(1): 1-20.
1476. Ascidian fauna of Western Port Bay. Victonia and a comparison with that of Port Phillip Bay. Mcm. nath, Mus. Vict. 37: 53-96.
1980. Algal-bearing didemind asedtans ith the IndoWest Pacific. Moms. Qd Mus. 20: 147.
1981. The ascidjans of the reef flats of Fiji. Proc. Linm Soc. N.S.W. 105(3): 147212.
1982a. Didemnid-atgal symbiosis: algal transfer to a new host generation. In 'Proceedings Fourth International Coral Reef Symposium' Manila 1981 vol. 2 p. 7213 (University of the Philippines: Quezon City).
1982b. Replication in the Ascidiacea: an adaptive strategy in the coral reef environment. In 'Proceedings Fouth International Coral Reet Symposium' Marila 1981 vol. 2, p. 725-33 (University of the Philippines: Quezan City)
1983. Two new genera of didemnid ascidians from tropical Australian waters. Beagle 1(2): 13-19.
1985. The Australian Ascidiacea Pt 1. Phebobranchia and Stolidobranchis. Mem. Qd Mus. 23: 1-440.
1989. Form and Function in the Ascidiacea. Bull. mar. Sci. 45(2): 253-276.
Kott. P., Anp Goophonr. 1. 1982. The ascidians of Hong Kong, In Morton, B.S. and Tseng, C. K. (eds) ${ }^{\text {'Proceedings of the First International Marine }}$ Biological Workshop: the flora and launa of Hong Kong and Southèrn China' vol. 1, p. 503-54 (Hong Kong University Press: Hong Kong).
Kott, P.. Parry. D,L. and Con, G, 1984. Prokaryotic symbionts with a range of ascidian hosts, Bull. mar. Sci. 34(2): 308-12.
Kowabrvsky. A 1874. Ueber die Knospung der Ascidien. Anch. mikrosk. Anui, EntwMech. 10:44170.

Kupffer. C.W. 1875. Tunicata. In Jahresb. Commission deatschen Meeren in Kiel' $1872-73$ vol. 2 p. 197-228 (Berlin).
Lafarcile. F. and Kniprath. E. 1978. Formation de spicules de Didemnidae (ascidies composees). 1. L'apparition des spicules chez loozooide apres la métamorphose. Mar. Biol. 45: 175-84.
Lahlele F. 1887 . Sur la classification des tuniciers. C.r. hebd, Seanc: Acad. Sci., Paris 102: 1,573-5,
1888. Etude systématique des tuniciers. C.r. Ass. fr. Avanc. Sci. 1887(2): 667-77.
1890. "Recherches sur les tumicies des cötes de France" (Toulouse) 330 pp .
Lesson. R.P. 1830. Zoologic. In 'Voyage autout du monde sur La Coquille pendant 1882-1825'vol. 2(1) p. 256-79, 433-40 (Paris).

Linnaeus. C. 1767. 'Systema Naturae' 12 th ed. vol. 2, pp. 1087, 1089, 1294, 1295, 1319 (Stockholm).
Macdonatd, J.D, 1858. Anatomical observations on a new form of compound tunicata (Chondrastachys). Amn. Mag. nar. Hist. (3)1: 401.
Medonne. M. 1889. Distribution of duplicate sets of marine invertebrates, 1879-1886. Rep. U.S. Fish Comm. 14: 843-63
Michabisen, W. 1898. Vorläufige Mitteilung ūber einige Tunicaten áus dem Magalhaenischen Gebiet sowie van Süd-Georgien. Zool. Anz. 21: 363-71.
1904. Revision der compositen Styeliden oder Polyzoinen, J Jh, hamb, wiss. Anst. 21(2): 1-124.
1907. Tunicaten. In 'Ergehnisse der Hamburger Magalhaensischen Sammelreise' vol. 8(5) p. 1-84 (I. Friederichsen and Co: Hamburg).
1914. Ueber eingé west-afrikanische Ascidien. Zoof. Anz. 43: 423-32.
1915. Junicata. In 'Beiträye zur Kenntnis der Meeresfauna West Arikas' p. 325-518 (Hamburg).
1919. Die Krikobranchen Ascidien des westlichen Indischer Ozeans: Claveliniden und Synoiciden. $J b$. hamb. wiss Anse. 36: 71-102.
1920. Ascidiae Krikobranchiae des Roten Meeres: Clavelinidae und Symoicidac. In Expedition S.M. Schiff Pola in das Rote Meer, nördliche und südliche Hallte 1895/96-1897/98* Zoologische Ergebrisse xxxiii. Denkschr. Akad. Wias. Wien. 97: 1-37.
1923. Neue and allbekannte Asculien aus dem Reichsmiseumi 74 Stockholm. Mith. zool. Stinst. Hamb. 40: 1-60.
1424. Ascidiae Krikobranchiae yon Neuseeland, den Chatham und den Auckland Insetin. VidenskMeddr dansk naturh. Foren. 77: 263434.
1930. Ascidiae Krikobranchiae. Fatana Südwest-Ausf. 5(7): 463558.
1934. The ascidians of the Cape Province of South Africa. Trats. R. Suc. S. Afr. 22(2): 129-63.
Mular, R.H. 1953a. CTona, L.M.B.C. Mem. typ. Br. mar. Pt. Ahim. 35: 1-123.
19536. On a collection of ascidians from the Gold Coast. Proce zool. Soc: Lond. 123(11); 277-325.
1955. On a collection of ascidians from South Arrica. Proc: zool. Soc: Lond. 125(1): 169-221.
1960. Ascidiacea. 'Discovery' Rep. 30: 1-160.
1962. Further descriptions of South Arican ascidians. Ann. S. Afr. Mus. $56(7): 113$ 221.
1963a. Australian sscidians in the British Maseum (Natural History). Proc, zool. Soc: Lond. 141(4): $689-746$.
1963b. The larva and affinities of the ascidian Sigillina vasha Millar. Ann. Mag. nau, Hist, 6(3): 204 207.
1964. South Afriçan ascidians collecled by ith. Mortensen with some additional material. Vidensk. Meddr dansk namrh. Faren. 12: 159-180.
1966a. Ascidiacea, Port Phillip Survey. Mem. natn. Mus. Vict. 27: 357-75.
1966b. Tunicata. Ascidiacea. $I n^{2}$ Marine Invertebrates of Scandinavia vol. I (Seandinavian University Books: Osia) 123 pp .
1970. Ascidians, including specimens from the deep sea. collected by the R.V. Vemo and now in the American Museum of Natural History. Zool. .f. Linn. Soc. 49: 99-159.
1971. The biology of ascidians. Adv. mar. Biol, 9: 1.82.
1975. Ascidians from the Indo-West Pacific region in the Zoological Museum. Copenhagen (Tunicata Ascidiacea). Steenstrupia 3(20): 205-336.
1977. Ascidians (Tunicata : Ascidiacea) from the north-eastern Brazilian Shelf. I. nat Hiss. 11(2): 169223.
1978. Ascidians from the Guyana Sheif. Neth. J. Sea Res. 12(1): 99-106.
1982. The marine fauna of New Zealand. Mem. N.Z Ocean. Insrit. 85: 1-117.

Minat-Edwards. H. 1842, Obseryations sur les ascidies composées des cätes de la Manche Mém. Acad. Sci. inst. Fr. 18: 217326
Monviot C. 1969a. Assidies récoltees par La Thalassa sur la pente du plateuu continental du Golfe de Gascogne (3-12 aout 1967). Bull. Mus. nän. Hist. nat., Paris (ser. 2) 41(1): 155 -86.
1969b. Ascidies recottées par La Thalassa sur lis pente du plateau continental du Golfe de Gascogne (1825 Octobre 1968). Bull. Mus. natn. Hist. nur.. Paris (ser. 2) $41(1): 1131-45$.
1970. Ascidies phlebobranches et stolidobranches. Campagne de la Calypso au large des cotes Atlantiques de l'Amérique du sud (1961-62), 17. Annls lnst. Oceangr. Monaco 47: 3359.
Monniot C. And Monntot, F. 1973. Ascidies abyssal rècoltées au cours de la campagne oceanographique Biaçores par Le Jean Charcot Bull. Mus. nath. Hist, nat. Paris (sér. 3) 93(121): 389-475.
1974. Ascidies abyssales de l'Allantique rêcoltées par Le Jean Charcot (Campagnes Naratlante, Walda. Polygas A). Bull. Mus, natm. Hish nat Papis (sèr. 3) $154(226): 72186$.
1977. Tuniciers benthiques profonds du nord-est Atlantique, Resultats des campagnes Biogas. Bull Mus, natn, Hist,nat. Paris (sér 3) 466(323):695-720.
1983. Ascidies antarctiques et subantarctic: morphologie el biogeographe. Mem, mus. nam. His. nut, Paris, sét, A. Zool. 125: 1-168.
1987. Les ascidies de Polynésie française. Mém. Mus: matn. Hist nar. Paris 136: 1-155
Monmiot E. 1988. Ascidies de Nouvelle-Calédonie V. Polycitoridac du lagon. Bull. Mus. natn. Hist. nat. Paris (sér. 4) 10(A2): 197-235.
MuE1FK O.F. 1776. 'Zoologiae Danicae' p. 22426 (Prodromus: Copenhagen).
Nakalichi, M. 1960. On the oecurrence of Archidistona agrregatum (a colony forming ascidian) in the Pacific waters. Publs. Sero mar, biol, Lub. 8(2): 223-8.
1966. Budding and growth in the ascidian. Archidistonra aggregatum. Reps Usa Mar. hial. Stat. 13(1): 110.

Nishikawh. T. 1980. Ascidians from the coast of the Kii Pemnsula. Middle Japan, with descriptions; of two new species. Mem. natn, Sci Mus, 13, 97-111.
1984. Ascidians from the Truk Islands. Ponape Island and Majuro Atoll (1 unicata, Ascidiacea). Proc: Jap. Soc. syst. Zool, 27: 107-40.
Nishikawa, T. AND TokiokA, T. 1976. Contributions to the Japanese ascidian fauna XXIX. Notes on some clavelinids from the Japanese waters. Publs Seto mar. biol. Lab. 23(1,2): 63-83.
Norr.J.T. 1892. On the coorposite ascidians of the North Shore Reef. Trans. N. Z. Insti, 24: 305-34,
Okл. A. 1912. On Cyatlocormus mpabilis n.gen., n.sp.. the type of a new family of compound ascidians from Japan. J. Coll. Sct.imp. Liniw. Tokro 32(12): 1-30.
1926. On a new genus of compound ascidians (Sindiazune nov. gen.) Proe imp. Acad. Japan 2: 13.3 5

1927a. Ueber Dendroctavella, eine neue Gatlung yon soziaten Ascidien Proc imp. Ac ad, Japan 3(8): 555 7.

1927b. Ueber rwei neue Rhoprolaed-Arten aun dapan. Proc. imp. Acad, lapan 3:681 3.
1927c. Zur Kerintnis der japanischen Botryliditu. Proc imp. Acad Japan 3(9)-607-9.
1927d. Ascidians. In 'Figuraro de Japanail Bestor' p. 494-8
1930. Ueher cine neve langgestiele Synascidic aus der Bucht von Sagamí, Proc. imp. Acad. Jopan 4: 303 5.
1933. Ein Fall von Kolonialknospung bei ciDer Symascidie Pros. imp. Arad. Jopan 9: 436-8.
1934. Ueber Clavelina cocrulea r.sp., die crste won Japan bekannt gewordene Clavolina. Proc. amp. Acad. Yapan 10(6): 365-6.
Parra, D.L. 1984. Chemical properties of the test of ascidlans in relation to predation. Mar. Ecol. Prog. Sor. 17: 279-82.
1987. 'Selected Chemistry of the Ascidan' (Ph.D) thesis: U/riversity of Queensland) 221 pp .
Pikis. J.M. 1948. Sur une callection d'ascidies de tio pone intercotidale de Dakar. Bull. Mus, naln: Hisk. nat Paris (sé 2) 20(1): 91.
Pirmar, G. 1889. Zur Fauna von Süd-Geotgien. Miat naturh. Mus. IVamb. 6(5): 3-4.
1890. Die niedere Thierwelt des atitarktischen Ufergebictes. In Neumayer. G. (ed.) Die Deutschen Expeditionen und ihre Ergebnisse ${ }^{+}$vol. 2. p, 455 572 (Berliin).
Phitipel. R.A. 184子. Rhopulaea cin neues Genos der einfachen Ascidien. Arch. Anat. Physiol. I: 457.

Pisavo, A., Rengel., D. and Bustuoabad. O. 1971 Finding of Ciona rolusta in Argentine Seas. Ann. Inst. Mus. Zool. Univ. Napoli 19(9); 1-10.
Plantt, R. And Vasseub, P. 1966. Sur une collection dascidies de la region de Tuléar (cóte sud-nuest de Madagascar). Annalex de l'Universiré de Madagascar Série Sciences de la Nature et Mathematiques, no 4: 143-52, 4 pls.
Plzon. A. 1908. Ascidies d'Ambione. Rev. Suisse Loot. 16: 195-248.
Pratt. H.S. 1916. Turricata. In A manual of the common invertebrate animals exclusive of insects. p. 655-71 (Chicago).

Quot. I. and Gaimard. P. 1834. Mollusques. In 'Voyages de découvertes de l'Astrolahe 1826.29., Zoologie vol. 3 p. 559-626; vol. 4 p. 304-6.
Renier. S.A. I804. 'Prospetto della elasse dei Vermi' pp. xv-xxvii (Padua); fide Porro. C. 1840, 'Nota per una Bibliografia Malacologie, Series $1[1$ Geografica no. 1-4, p. i-iii and numbered columns 27-130.
RIDGEWAY, R. 1886. 'A nomenclature of colouts for naturalists and compendium of useful knowledge for ornithologists ' (Little, Brown and Co.: Boston) 129 pp .
Ritier. W.E. 1900. Some ascidians from Puget Sound. Collections of 1896. Ann N. Y Acud Sci 12 589 616
1903. The structure and affinities of Herdmania claviformis, the type of a new genus and family of ascidians from the coast of California. In 'Mark Anniversary Volume'p. 237-61. pls xvii, xix (Henry Holt and Co.: New York).
1913. The simple ascidians from the north-eastern Pacific in the collection of the United States National Museum. Proc. U.S. natn. Mus. 45: 427505.

Ritter. W.E. and Forsytil. R.A. 1917. Ascidians of the littoral zone of southern California. Univ. Calif. Publs Zool. 16: 439-512.
Roule. L. 1884. Récherches sur les ascidies simples des côtes de Provence I. Phallusiadées. Annls Mus. Hist. nat. Marseille 2(1): 1-270.
SAlFo. M.B. 1978. Studies on the renal sac of the ascidian Molgula manhattensis. J. Morph. 155(3): 287-310.
Salfnsky. W. 1893. Morphologische Studien an Tunicaten 11. Ueber die Metamorphose der Distaplia magnilarva. Morph. Jahrb. 20: 449542.
Salfi. M. 1925a. Le sinascidie del gen. Sycozoa raccolte dal Cap. G. Chierchia duranteil viaggia circumnavigazione della R. Corvetta Vettor Pisani negli anni 1882-1885. Annuar. R. Mus. zool. R. Univ. Napoli (nuovo ser.) 5(2): 1-9.
1925b. La fissazione della larva e la genesi della colonia in Holozoa magnilarva (Della Valle). Boll. Soc. Nat. Napoli 37: 224-30.
1926. Ulteriori osservazioni sulle sinascidie del gen. Sycozoa Less. della Vettor Pisani. Annuar. R. Mus. zool. R. Univ. Napoli (nuovo ser.) 5(16): 1-10.
1927. Note descrittive e biologiche su due ascidie del Golfodi Napoli. Pubbl. Staz. zool. Napoli 8: $273-$ 85.
1928. Richerche sulla biologia delle ascidie del Golfo di Napoli. Ricerche di Morfologia e Biologia Animale 1(2): 8-370.
1933. Le recenti richerche suifenomeni di riproduzione asessuata dei tunicati (English resumé p. 200). Archo zool. ital. 19 (suppl): 121-201.
Sars. M. 1851. Beretning om en i Sommeren 1849, foretagen zoologiske Reise i Lofoten og Finmarken. N!'t Mag. Naurvid. 6: 121-211.
1859. Bidrag til en skildering af den arktiske molluskfauna ved Norges nordlige Kyst. Forh. Vidensk Selsk. Krist. 1858: 34-87.
Savikiny, J.C. 1816. "Mćmoires sur les animaux sams vertebres' pt. 2, p. 1239 (Paris).
Savibe-Kent. W, 1897. Marine Miscellanea. In "The Naturalist in Australia" p. 21551 (Chapman and Ilall: London).
Scimertz. J.D.E. 1879. 'Catalogue of the Muscum Godeffroy" cat. 7, p. 8990.
Shbigir. O. 1893 1907. Appendicularien und Ascidien (Tunicata, Mantelticre). In Bronn, H.G. 'Klassen und Ordnungen des Tier-Reichs" vol. 3 suppl. p. 26 80, 3851280 (C.F. Winter: Leipzig). Continued by Hartmeyer 1909 1911.
SHIPMIRD. S.A. 1983. The epifauna of megaripples: species adaptations and population responses to disturbance. Ausf. J. Ecol. 8: 3%.

Sturrr. C.P. 1885. Ueber einige einfachen Ascidien von der Insel Billiton. Nat. Tijdschr. Nederl. Ind. 45: $160-232$.
1895. Tunicaten. In Semon, R. (ed.) 'Zoologische Forschungsreisen in Australien und dem Malagischen Archipel'. Denkschr. med.-naturu'. Ges. Jena 8: 163-86. Nachtrag 7.u den Tunicaten: 325-6.
1898. Tuniciers récueillis en 1896 par La Chazalie dans la Mers des Antilles. Mem. Soc. zool. Fr. 11: 5 34.
1900. Tunicaten aus dem Stillen Ocean. Zool. Jh. (Systematik) 13: 1-35.
1904. Die Tunicaten der Siboga-Expedition Pt. 1. Die socialen und holosomen Ascidien. Siboga Exped. 56A: I-126.
1906. 'Tuniciers de l'Expédition antarctiquc Francaise 1903-05' (Masson: Paris).
1909. Die Tunicaten der Siboga Expedition Pt. 2. Die merosomen Ascidien. Siboga Exped. 56B: 1112.
1919. Ueher einige alte und neue Ascidien aus dem Zoologischen Museum von Amsterdam. Bijdr. Dierk. 21: I 12.
Sprncfr. R.S. 1956. Studies in Australian estuarine hydrology 11. The Swan River. Aust. J. mar. Frestow. Res. 7: 193-253.
STIMPSON. W. 1852. Scveral new ascidians from the coast of the United States. Proc: Buston Soc, nat. Hist. 4: 228-32.
1854. Synopsis of the marine Invertebrata of Grand Manan; or the region about the mouth of the Bay of Fundy, New Brunswick. Smithson. Contr. Knowl. 6(5): 1-68.
1860. A trip to Beaufort. N. Carolina. Am. J. Sci. (2)29: 442-445.

Sumner. F.B.. Osburn. R.C., and Colf. L.J. 1913. A biological survey of the waters of Woods Hole and vicinity. Bull. U.S. Bureau of Fisheries 31: 1860.
Tokioks. T. 1942. Ascidians found on the mangrove trees in lwayama Bay, Palao, Palao trop. biol. Stn. Stud. 2(3): 497507.
1950. Ascidians from the Palao Is (1). Publs Seto mar. biol. Lab. 1(3): 115-50.
1951a. The launa of Akkeshi Bay. XV1ll Ascidia. (Contribution to Japancse ascidian fauna III). Publs Akkeshi mar. biol. Sth 1: 1-24.
1951b. Contributions to lapanese ascidian fauna IV. Notes on some ascidians collected in Osaka Bay (1). Publs Seto mar. biol. Lab. 1(4): 169-82.
1952. Ascidians collected by Messrs Renzi Wada and Seizi Wada from the Pearl Oyster bed in the Arafura Sea in 1940. Publs Seto mar. biol. Lab. 2(2): 91 142.
1953. 'Ascidians of Sagami Bay' p. 1-313. 79 pls (Iwanami Shoten: Tokyo).
1954a. Contributions to Japanese ascidian fauna V11. Invertebrate fauna of the intertidal zonc of the Tokara 1slands. VIl Ascidians. Publs Seto mar biol. Lab. 3(3): 239-64.
1954b. Contributions to Ilapanese ascidian fauna IX. Redescriptions of Oka's species found in 'Figuraro de Japanai Bestoj'. Publs Seto mar. biol. Lab. 4(1): 69-75.

1954e. Contributions to Japanese aseidian fauna X. Notes on some ascidians collected in Osaka Bay (2). Publs Seto nıar. biol. Lab. 4(1): 75-98.

1955a. Contributions to Japanese ascidian fauna XI. Sporadie me moranda (2). Publs Selo mar. biol. Lab. 4(2,3): 20522.
1955b. Aseidians from the Palao lslands (1I). Publs Seto mar. biol. Lab. 5(1): 43-57.
1958. Contributions to Japanese aseidian fauna XII. Sporadie memoranda (3). Publs Seto mar. biol. Lab. 6(3): 313-25.
1959. Contributions to Japanese fauna XIII. Sporadie memoranda (4). Publs Seto mar. biol. Lab. 7(2): 223-36.
1962. Contributions to Japanese aseidian fauna XIX. Additions to Japanese aseidian fauna with notes on two already known species. Publs Seto niar. biol. Lab. 10(2): 260-82.
1963. Contributions to Japanese aseidian fauna XX. The outline of Japanese ascidian fauna as compared with that of the Paeifie eoast of North Ameriea. Publs Seto mar. biol. Lab. 11(1): 131-56.
1967a. Pacific Tunicata of the United States National Museum. Bull. U.S. natn. Mus. 251: I 242.
1967b. On a small eolleetion of aseidians from the vieinity of Nhatrang, Vietnam. Publs Seto mar. biol. Lah. 14(5): 391-402.
1967e. Contributions to Japanese aseidian fauna XXII. Aseidians I'rom Sado 1 (2). Publs Seto mar. biol. Lab. 15(3): 23944.
1970. Aseidians from Mindoro Island, the Philippines. Publs Seto mar. biol. Lab. 18(2): 75107.
197I. A new species of Rhopalaea from the Pacific Coast of Costa Riea (Tunicata, Ascidiacea). Puhls Seto mar. biol. Lab. 19(2,3): 119-22.
Tokioka. T., and Nishikawa. T. 1975. Contributions to Japanese aseidian fauna XXVII. Some ascidians from Okinawa, with notes on a small eollection from Hong Kong. Publs Seto mar. biol. Lab. 22(5): 32541.
1976. Contributions to the Japanese ascidian fauna XXX. Further notes on Japanese clavelinids. Pub/s Seto mar. biol. Lab. 23(3-5): 341-50.
Trason, W.B. 1957. Larval structure and development of the oozooid in the ascidian Euherdmania claviformis. J. Morph. 100(3): 510-26.
1963. The lifc cyele and affinities of the colonial aseidian Pvcnoclavella stanleyi. Univ: Calif. Publs Zool. 65(4): 283-326.

Traustrid. M.P.A. 1880. Oversight over de fra Danmark og dets nordlige Bilande kjendte Ascidiae Simpliees. Vidensk. Meddr dansk Naturh. Foren. 1879 1880: 397443.
1882. Vestindiske Aseidiae Simplices, Forste Afdeling. Phallusiadae. Vidensk. meddr dansk naturh. Foren. 1881: 25788.
Van Nami. W.G. 1902. The aseidians ol the Bermuda Islands. Trans. Conn. Acad. Arts Sci. 11: 325-412.
1912. Simple aseidians of the coasts of New England and neighbouring British Provinees. Proc. Boston Soc. nat. Hist. 34: 439619.
1918. Aseidians of the Philippines and adjaeent waters. Bull. U.S. natn. Mus. 100(I): 49-174.
1921. Aseidians of the West Indian region and south eastern United States. Bull. Am. Mus, nat. Hist. 44: 283-494.
1945. The North and South Ameriean aseidians. Bull. Am. Mus. nat. Hist. 84: 1-476.
Vassfur. P. 1969. Deuxiéme eontribution a l"ẻtude, des aseidies de Madagasear région de Tuléar. Bull. Mus. natn. Hist. nat., Paris 40(5): 912-33.
Vfrrill.. A.E. 1871. Deseriptions of some imperfectly known and new aseidians Irom New England. Am. J. Sci. (3)1: 54-8, 93 100, 211 2, $28894,4436$.

1872a. Marine launa of Eastport. Bulletin Esse.s Institute, Maine 3: 2-6.
1872b. Reeent additions to the molluscan fauna of New England and the adjaeent waters, with notes on the other speeies. Am. J. Sci. (ser. 3) 3: 209 14, 281-90, pls. 6-8.
1873 1874. Results of recent dredging expeditions on the coast of New England. Ani. J. Sci. (ser. 3) 5: 1-16, $98-110 ; 6: 435-41 ; 7: 38-46,131-8,405-14$, 498505,608 , pls. 6-8.
1880. Occurrence of Ciona ocellata (Ascidia ocellata Agassiz) at Newport, R.I. Am. J. Sci. (ser. 3) 20: 2512.

Verrill. A.E. and Smith, S.I. 1873. Report on the invertebrate animals of Vineyard Sound and adjaeent waters with an account of the physical features of the region. Rep. U.S. Fish. Comm. 1: 296-778, pls 1-38, 3 maps.
Watanabe. H. and Tokioka. T. 1973. On a new species of Clavelina from Japan, with remarks on its mode of budding. Publs Seto mar. biol. Lab. 21(2):99-107.
Whiliaves. I.F. 1901. Catalogue of the marine invertebrata of eastern Canada. Geol. Surv. Canada, publ. no. 722: 26571.

INDEX TO TAXA

Page numbers of taxon descriptions and figures appear in bold
Aniaroucium,
anomalunt, 79
distomoides, 134
Amplicarpa, 165
Aplidie,
cerebriforme, 143
pedunculatum, 147
Aplidium. 13
lobatum, 179
distomoides, 134
pedunculaturn. 147153
triggiensis, 8
Aplousobranchia, 18-20
Araneum, 21
Archiascidia, 3567
neapolitana, 67
Arcliidistoma, 76162163
aggregatum, 163
richeri. 73
rubripunctum, 73
Ascidia,
canina, 21
intestinalis, 21
lepadiformis, 35
ocellata, 21
pulchella, 21
tenella, 21
Aseidiidae, 1321
Atapozoa, 82
deerrata, 106
fantasiana, 92
marshi, 8789
mirabilis, 108
Atopogaster aurantiaca, 159
Airiolum, 101983
Botryllinae, 10
Botrylloides magnicoecus. 10
Brevicollus, 41416162163236
tuberatus. 8236 237-8 254
Chondrostachys, 3542
cylindrica, 42
macdonaldi, 42
Ciona, 8121314151618192021222634
antarctica. 21
canira. 21
diaphanaea, 22
fascicularis, 22
gelatinosa, 22
imperfecta, 21
indica, 212426
intestinalis, 20 21-4 239
intestinalis longissima, 21 34
intestinalis gelatinosa, 2134
acellata. 21
pulchella, 22
robusta, 22
savignyi. 2124
sociabilis, 21
tenella, 21
Cionidae, 49131418 20-1 24
Clavelina, $161835-839636667707980156$
arafurensis, 353637 38-9 170238
australis, $1635363739-414550536163$

240

baudinensis, 16173334353637 41-2 5860 61240
brasiliensis, 1646
claviformis, 79
coerulaea, 365153
cyclus, 365455
cylindrica, $1435363742-55053636670$ 240
dagysa, $12163435363745-6505758241$
detorta. 71
diminuta. 73
elegans, 36394863
enornis. 364148
fecunda, 1635363742 47-8
flava. 38
meridionalis, $121618333536374648-50$
5158241
miniata, 121838465057
nirabilis, 353637 50-1
minutu, 33
moluccensis, 14151635363738414445
50 51-3 5461632.41
nana, 7071
nigra. $143536375353-5242$
nodula, 73
obesa. 3848
oliva, 16183536373839 55-7 242
ostrearium, $12183335363746485057-8$ 242
pseudobaudinensis, 1633353637394142
$5158-6163242$
robusia. $15163536374148515361-3242$
roseola. 157
sigillaria, 79
viola, 1236385763
Clavelinidae, 489101213141516171819
$20212433-563666781828384156162$
Colella.
claviformis, 346679
cyanea, 89
elongata. 205
incerta, 143
murrayi, 146
pedunculata, 147153
perrieri, 155
plicata. 143
pulchra. 149
quoyi, 153
ramulosa, 153
sigillinoides, 153
tenuicaulis, 149152
thompsom. 64
umbellata, 153
Corellidae, 13
Cyathocormus, 84137139
mirahilis, 137
Cystodyles, 8101315171869162163178183
aucklandicus, 179
ceylonensis, 179
cretaceous, 179
dellachiajei, 179-83 252
draschei, 179
durus. 179
fuscus. 182
hapu, 179183
mucosus, 182183
perspicuus, 179
philippinensis, 179182
punctatus, 182183
violaceus, 179
violatinctus, 182
Diazona, 2425
gigantea, 157
violacea, 25
Diazonidae, 4689121314151618192024
$24-5253133346683156162$
Didemnidae, 4789101213141517181920 83109126
Diplosoma, 16
macdonaldi, 8
multipapillata, 8
Distaplia, 8101213141516171819818283
$84109-13 \quad 110126135137156159162178$
183236
ausiraliensis, 110111112 113-5 120121247
hursata, 114
capensis, 111
cerehriforme, 143
cuscina, $111112113115-6118120122125$ 132133
cylindrica, 126
distomoides. 134
dubia, 111112 116-8 122247
durbanensis, 111
fasmeriana, 133
florida, $13111112118-9120125133247$
japonica, 116
magnilarva, 81127
mikropnoa, 111 127129
muriella, 110111112 119-21
occidentalis, 816110
pallida, $111112118119121-2122124130$ 132133135247
prolifera, 111112 122-4 130135
racemosa. $111112113120123124-5$
regina, 111112120123125
reinaculata, $158182111112125-6129133$ 134135
skoogi, 111
smithi. 110114
stylifera. 111112114124125 127-9130132 134135247
systematica. 110113124
tahihuero, 113116
takioka, 111112119122124 129-30131132
vallii, 110111113114115116
violetta, 110111112115121124129
$130 \quad 130-2$
viridis, 13111112118119121122125126 130 132-3 248
yezoensis, 125
Disıoma.
caernlea, 89
deerratum. 105106234
dellechiajei, 178179
loysani, 214
molle, 220
parva, 214
ruhrum, 188
Distomidae. 8283
Disromus, 165
Dumus areniferus, 79
Ecteinascidia
crassa, 26
Jusca, 26
solida. 26
Ecteinascidia (? Rhopalopsis) solida. 26
Enterogona, 4918
Euclavella. 141934666779
claviformis, 1766 79-80 86245
Eucoelium hospiliolum, 183
Eudistorna. 689101314151617196992100
$101162163178183188-94203212222230$
234236238
alhum, 214
ainplum, 188190192 194-6 222225228253
anaematum. 190193 196-7 208218224
angolanum. 191 192194 197-9 203225228
aureum, 189193 199-200 226
bulbatum, 163191192193 200-1
catuleum, 89
carnosum. 16191192198199 201-3. 228
clarum. 15162
constrictum, 191 $193203-4220229231253$
cyanea, 89
cyaneurn. 89
desciderata, 163
eboreun. 190193205206
elongatum, 15189193204 205-6 210216231 253
fantasianu, 92
fragum, 193
gilboviride, 189192194 206-8 232233253
glahrum, 193
glaucum, 162189193194 208-10 217218224 231
globosum, 189193200204 210-1 218227231
gracilunı. 191193 211-2 216
incuhium, 16162190193194 212-3
laysami, 15163189193194204206212
214-6 253
loricalum, 193194
maculosum. $162190193200210216-7225$
226231236254
malum, $189193196200217-8291$
marianense, 209217226
microlarvum, 191193204 218-20 231
miniacum, 193
molle, 8220
mulliperforarum. 193228
murrayi, 163
muscosum, 162190193196198208210217
220-2 224228232
ulivaceum, 15162208210214
ovatum, 16191192203204 222-4 225229 232233
parvum, 214216
pratulum, 190193196208223224
purpureum, 16162190193196208217 225-6 232
pyriforme. 191192196199200216222
226-7 229
reginum. 192198227228254
renieri. 216226
rigidum, 208209231232
ritteri, 8
rubrum. 194
sahulosurn, 191192204222226229254
segmentatum, 149216233
snakabri, 198
stellatum, 194
superlatum, $162170189193210229-31$
figrum, 190193208210217218222 231-2
twealensis, 193194216
tokarac, 194210
tumitum, 189192 232-3
viride, 100101210
viridis, 100
vitiatum, 196
vulgare, 222
Euherdmania. 68121314151719385367 81848698156
claviformis, 86
dentarasiphonis, 156
digitata, 156
Euherdmaniinae, 79101415171930313879
Exostoma, 89101320105106162163194 233-4
ianthinum, 234-6
Holozoa.
cylindrica. 109
valii, 115
Holozoidae. 489101213141516181920 66 81-4 102106
Holozoinae. 8283162
Homoeodistoma longigona, 33
Hyperiodistoma, 82162
IIIpodistoma, 489101314178182838486
$93100102105-6126234236$
deerratum, $82105106-8109194246$
ianhhinum, 234236
mirabile, 82105106 108-9 246
vastum. 1582100105106108109234236
Hypsistozoa. 8121314161718818284
$133-4135137236$
distomoides, 122129133 134-5 248
fasmeriana, 122133135
obscura, 134
Leptobotrylloides duhiurn. 116
Leproclinides. 1083
Molgula, 8
Molgulidae. 913
Neodistoma. 1014188284135236
mammillotum, 135-7 249
Nephtheis, 14193335606379
faciformis, 64
fascicularis, 1455 63-6 243
malayensis, 64
thompsoni, 64
Oxycorynia.
arenosa. 69
fascicularis, 63
pseudohaudinensis, 58
Paessleria, 162
Patridium, 31
pulvinatum, 3133
Perophoridae, 13
Phallusia intestinalis, 21
Phlebobranchia. 45891213141518192021

Pleurogona, 4
Podoclavella, 35
australis, 3944
cylindrica, 4451
daggra, 45
detoria, 71
fecturula, 47
meridionalis, 485761
mohrccensis. 5153616.3
ostreariun, 57
policitorella, 38
procera. 4850
Polycarpa. 8
Polycitor, 891013151625162163165183
194236238
ampliss, 194198199
angolanus. 197
aunutus, 1517162164165 165-7 170175
arenacerss, 222
unrantiacus, 159161
calamus, $164165167-8175251$
cerosus, 164165 168-9 175251
circes. $1517162164165167169-70174$ 175177
coalitus, 106194
crystallinus. 165177178
discolor, 194196
emergens, $164165170-1177$
gelatinosa, 169170171
giganteus, $6164165170171-4177178251$
gilboviridis, 206
glancius, 208
ianhimus. 106194233234
irregularis, 214
laysani, 214
longitubis, 104
magalhaensis, 203
mollis, 220
mubilus. 164165 174-5 251
obeliscus, 164165174175238
paesslerioides. 197198201203
renziwadat, 25169
scaber. 222
signiferus, 100194
subarborensis, $164165171175-7$
torosiss, 105234236
tran.sficidess, $16171164165170176177-8$
violaceus. 194
vitrens, 15162
Polvciuor (Eudistoma).
olivaceum. 214
paesslerioides, 201 203
Polycitorella, 4810131518162163178
183-4 204
coronaria, 183 184-7 188252
hospitiolis, 183
mariae. 183184186188
oriennalis, 183 187-8 252
pallick, 184186188
perèsi. 184
setwensis, 184
Polycitoridac, 47891012131417192066
$69818283106156162-3237$
Polycitorinae, 8283162
Polyclinidae, 4789101213141517192024
30386667
Pohclinum, 91524
cytindriciun, 42
gigunteum, 171
globorum, 171
mikropuons. 129
nigra. 98
Polydistona, 48910131481828384
101-2 105109126236
fingiforme. 101 102-3 105
longitube, 103 104-5
Polyzoinae, 67
Prochloron, 16
Protoholozua. 84
Protopolychinmm, 9152430
claviforme, 3031
pechmculatmm, 31
Psammaplidium,
จvatum, 222
priforme, 226
Psendodiazona, 1314192425 30-1 33
abyssa. 31
claviformis, 31-3 238
sabulosa, 3031
Pseudodistoma. 1519231
Pycnoclavella, $7914153435386667-97076$ 79163
arenosa, $38676869-717376243$
aurantia. 66686971727376243
aurilucens, 66676970
detorra, $1767686971-376243$
diminua. $6768697173-6777879244$
elongata, 676869 76-7 244
konae, 66676973
minuto, 666970
stanteyi, 66676971
tabella, 6768697376 77-9 244
Pycnoclavellidae, 468910121314151718 $192066-769798183848698$
Pyrra, 13
Pyuridae. 913
Rhopalaea, 1213141824 25-6 2830
abdominalis, 2529
birkelandi, 25
crassa, 2425 26-9 30238
hartmeyeri, 2529
macrothorax, 2628
neapolitana, 25262830
nordgaardi, 24252630
norvegica, 25
piru, 2526
sagamiana, 26
tenuis, 132526 29-30
Rhopalopsis, 26
birkelandi, 29
crassa, 26
defecta, 252628
fusca, 2629
neapolitana, 29
Ritterella, 10131524236237
prolifera, 216
Sigillina, 4678910131415161719818283
84-7 98100102105108162163203210231
234236
australis, 138284858687 87-9 909296101 206245
caerulea, 8992
coalita, 106
cyanea, 2966858687 89-92 9396101245
deerrata, 106
digitata, 8687939699100
fantasiana, 818284858687 92-3 99100105 162231246
grandissima, 121516818485868789 93-6 101170246
magalhaensis, 198201203
mjöbergi, 481317198184858687 96-8
möbiusi, 8687
nigra, 8485868793 98-100 162231
psammophorus, 8687
signifera. 8586878996 100-1 167194210 246
vasta, 234
Sigillina (Paessleria), 201203
Sigillina (Polycitor), 106
Stereoclavella, 35
australis, 39
Stolidobranchia, 4568910121314151819 2067

Stomozoa, 35156157
australiensis, 157-9 161250
bellissima, 159-61 250
murrayi, 157
roseola, 156157159
Stomozoidae, 48910131416192035 156-7 162
Styelidae, 913
Sycozoa, 68910121314151617198182 8384110 137-40 162
anomala, 13137138140143
arborescens, 139140153
brevicauda, 16137138 140-2 146152
cavernosa, 138139140 142-3 149155156
cerebriformis, 82137138139 143-6 152249
gaimardi, 140
georgiana, 139140
kanzasi, 139140152
mirabilis, 140143
murrayi, 138140 146-7 156250
pedunculata, 138139140 147-9 152153155 156250
perrieri, 155
pulchra, 216137138139140142147149
149-52 153155156250
quoyi, 153
sedens, 100
seiziwadai, 138139140146147152 152-3 154
sigillinoides, 137138139140146147149152 153-6
tasmanoides, 146
tenuicaulis, 149
umbellata, 153
Synclavella, 3561
australis, 3958
lessoni, 58
Syndiazona, 2425
chinensis, 252630

Tethyum sociabile, 21
Tetrazona, 162
Tylobranchion, 24253031
speciosum, 33

[^0]: Describion
 Esterval Apprarance: Individuals are soli-

[^1]: A. indigenous; WP, Western Pacific; IWP. Indo-West Pacific; tr. tropical; te. temperate. ${ }^{2}$ Range given anticlockwise around the continent. ${ }^{3}$. 7ooids entirely embedded; ES, zooids partially embedded: S, 700 ids solitary.

[^2]: ${ }^{1} \mathrm{~A}$, indigenous; WP, western Pacific; tr , tropical: te, temperate. ${ }^{2}$ Range given anticlockwise around the continent.

[^3]:

 1-j. $\operatorname{lin} m$

[^4]: A, indigenous: WP, western Pacific; IWP, Indo-West Pacific; tr, tropical; te, temperate. ${ }^{2}$ Range given anticlockwise around the continent.

[^5]: ${ }^{1}$ WP, West Pacific; I, Indian Ocean; IWP. Indo-West Pacific; A, indigenous; tr. tropical; te, temperate. ${ }^{2}$ Range given anti-clockwise around the continent. ${ }^{3}$ Description of cells observed in preserved colonies only. 'Incubation in atrial cavity unless oviduct indicated.

